Kudla Millson lift of toric cycles and restriction of Hilbert modular forms
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Abstract

Let V be quadratic space of even dimension and of signature (p, ¢) with p > ¢ > 0. We show
that the Kudla-Millson lift of toric cycles - attached to algebraic tori - is a cusp form that is the
diagonal restriction of a Hilbert modular form of parallel weight one. We deduce a formula relating
the dimension of the span of such diagonal restrictions and the dimension of the span of toric and
special cycles.
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1. INTRODUCTION

1.1. Intersection numbers of geodesics on modular curves. Let Yy(p) = I'o(p)\FZ be the
open modular curve for some prime p. Let v, be the image in Yy(p) of the geodesic in 52 from 0
to co. It defines a relative cycle

Yoo € Z1(Yo(p), 0Y0(p), Z). (1.1)

On the other hand, one can attach compact geodesics to a real quadratic field Q(\/ﬁ) Every ideal
class I in the narrow class group %g defines a closed and oriented geodesic vy in the modular curve
Yo(p). After taking linear combinations and twisting by an odd character 1): ‘6'5 — C* we get a
cycle

=Y (v € Z1(Yo(p)). (1.2)

Ie%}

There is a natural action of the Hecke operators on these geodesics by acting on the endpoints in
€, which gives an element T),vy € Z1(Yo(p)). Moreover, we have a pairing in homology

(= =) Hi(Yo(p), Z) x H1(Yo(p),0Yo(p), Z) — Z. (1.3)

If two geodesics 1 and 72 in Yo(p) intersect transversely and in a compact set then (y;,7v2) =
> €172 +1 is the the topological intersection number, where +£1 depends on the local orientation
at the intersection point. Darmon-Pozzi-Vonk prove the following in [DPV21, Theorem. A].
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Theorem (Darmon-Pozzi-Vonk). If p splits in Q(v/D), the modular form

G’Yoo®'7w (T) = Lp(z/)v 0) -2 Z<70@7 Tn7¢>qn (14)
n=1

of weight 2 and level T'y(p) is the diagonal restriction of a p-stabilized Hilbert-Fisenstein series

E(p) (wa T, T) fOT‘ SLQ(Q(\/E))

In [Bra23a], we showed how to recover (and generalize) the theorem of Darmon-Pozzi-Vonk by
using the Kudla-Millson lift. The idea was to consider the embedding F* C SO(d, d) of a totally
real field F of degree d, which gives a non-compact cycle on the locally symmetric space of SO(d, d).
The (regularized) integral of the Kudla-Millson theta lift over this cycles gives a generating series
of intersection numbers generalizing the right handside of (1.4). On the other hand, the relation
to a Hilbert-Eisenstein series follows from a Siegel-Weil formula and the seesaw

SO(d, d) SLo(F)

<

Fx SL»(Q).

In the case where F is real quadratic field, this yields to the theorem of Darmon-Pozzi-Vonk above.

Remark 1.1. Another closely related seesaw appears in [BCG20]

GL4(Q) GL2(F)

>

Fx GLy(Q),

where the right hand side is the diagonal restriction of (the same) Hilbert-Eisenstein series, and
the left hand side is the evaluation of an Eisenstein class on the same cycle above. The two seesaws
are related by embedding GL4(Q) in SO(d, d), and the Bergeron-Charollois-Garcia lift is closely
related to the Kudla-Millson lift via the Mathai-Quillen form. We hope to explain this in more
detail in future work.

1.2. Main result. In this paper, we replace the torus F* C SO(d, d) by a more general anisotropic
maximal Q-torus, of maximal R-rank in an orthogonal group SO(p,q) of signature (p,q) with
p > q > 0. We restrict ourselves to anisotropic tori, to avoid having to deal with the regularization
of the integral as in [Bra23a]. However, one can combine the result presented here with the result
of loc. cit. to consider any maximal Q-torus of maximal R-rank, not necessarily anisotropic.

Remark 1.2. The study of cycles attached to algebraic tori in orthogonal groups is also motivated by
the recent work of Darmon-Gehrmann-Linowski. In [DGL23|, the authors define rigid meromorphic
cocycles in arbitrary signature, generalizing the rigid meromorphic cocycles in signature (2,2)
studied in [DPV21]. They conjecture that evaluated on toric cycles, these cocycles should be
algebraic. The seesaws presented here could be relevant.

Let (V,Q) be a non-degenerate rational quadratic space of dimension 2d and signature (p, q),
where we suppose that p > ¢ > 0. Let SOy C GLgg be the orthogonal group of V' and let
SOy (R)* ~ SO(p, q)* be the connected component containing the identity. Let K, be a maximal
compact subgroup Ko, ~ SO(p) x SO(¢) C SOy (R)* and 2T ~ SOy (R)" /K its associated
symmetric space, which is a pg-dimensional Riemannian manifold. R

Let L C V be an even integral lattice of level N. Let K; C SOy (Q) be an open compact
subgroup stabilizing the finite Schwartz function ¢ = 17 € §(V), where L=L®ZcC Vg and Q
are the finite adéeles. We set K = KK and consider the adelic space

Y = S0y (Q)\SOv (A)/K, (1.5)

which is a finite union of locally symmetric space I'\@* for some congruence subgroup of I' C

SOv(Q)*.



In [KM86; KM87], Kudla and Millson construct an element
6, € HI(Y) ® My(To(N)) (16)

that realizes a lift from the homology to the space of modular forms of weight d = pT“ and level
[o(N). As for the modular curve, there is a homological pairing

(=, =i Hy(Y,Z) X Hpqq(Y,Z) — Z. (1.7)

If the homology classes are represented by two smooth immersed submanifolds that intersect trans-
versely and in a compact set, then and the intersection number (C7, Cs) is the signed intersection
number, as for geodesics. The main feature of the Kudla-Millson lift is that for a cycle C' in H,(Y')
it has the Fourier expansion

0,(r,C) = /C 0,(r) = (C) + 3 (€. Cule)™, (18)

where the cycles Cp,(¢) € Zpq—q(Y, 0Y, Z) are special cycles coming from embeddings SO(p—1, ¢) —
SO(p, q).

In this paper, we will evaluate the Kudla-Millson form on cycles attached to algebraic tori. Let
T C SOy be an anisotropic algebraic Q-torus, maximal and of maximal R-rank. Since we assumed
that p > ¢, the orthogonal group SOy is of real rank ¢. Hence, the (maximal) real rank of T is g.
Let

X = (Xoo> X7): T(Q\T(A) — C*

be a character of finite order. The archimedean part X is a character on T(R) ~ (R*)? x (S1)
To avoid trivial cancellations of the integral, we need to make the assumption that the character
is odd, i.e. it is the sign function at every real place, and trivial at every complex place. Let
Ky = KrooKrp s C T(A) be such that Ky o = Ko N T(R) is maximal compact, and that
Kr, s C K¢. Let €7 be the finite group of double cosets

P—q
2 .

@r == T(Q)*\ T(Q)/Kr . (1.9)
We define
Yy =T@Q\T(A)/Kr = | | A\RZ, (1.10)
I€6r

where A :== T(Q)"NKr,s. The embedding of T(A) in SOy (A) induces an immersion Y7 — Y, and
the image of the connected component A\RZ, associated to I € € defines a cycle Cr; € Z4(Y).
Let us now suppose that x is trivial on K7 ;. We can see the finite part x; as a function on
Xf: €r — C* and define the cycle

Cy= > xs(I)Cr1 € Z,(Y). (1.11)

I1€6r

By the work of Kudla-Millson, it is known that if ¢ is odd, then ©,(7,C) is a cusp form for any
cycle C; see [KM90, Theorem. 2]. We show that when we restrict to the cycles Cy, then the lift is
always a cusp form.

Theorem 1.1. Let V be an even dimensional quadratic space of signature (p,q) with p > q >0
and let C, be the cycle attached to an anisotropic mazimal Q-torus of mazimal real rank q. Then
©,(1,Cy) € Sa(To(N)) is a cusp form of weight d and level N.

In the case of toric cycles C attached to isotropic Q-tori, as considered in [Bra23a), the lift is not
a cusp form in general. In fact, for suitable lattice in V' the constant term of ©, (7, C, ) is a partial
Hecke L-function of y.



1.2.1. The crucial fact that we want to exploit in this paper, is that any even dimensional quadratic
space can be obtained by restriction of scalars of an étale algebra with involution. More precisely,
let V be a quadratic space over Q as before. Let T(Q) a maximal Q-torus in SOy (Q). Then, there
exists an étale algebra E of dimension 2d with involution € and a d-dimensional subalgebra F' fixed
by €, such that (V,Q) ~ Resp,q(F, Qn) where

Qaolr,y) = a(ze(y) + e(z)y) (1.12)

for some a € F*. Moreover, we have T(Q) ~ E' where E' are the elements 2 in E of norm
ze(x) = 1. The quadratic extension E/F is a product of quadratic extension F;/F; where F; is a
field. If E; = F; x Fj is split, the involution permutes the two factors and El1 ~ F*. This is the
case considered in [Bra23a]. On the other hand, when F;/F; is a field extension, the involution
¢ is the Galois involution Gal(E;/F;). This is the case we want to consider in this paper. The
assumption that T is Q-anisotropic implies that none of the factors E; is split. On the other hand,
the assumption that the real rank of T is maximal implies that the fields F; are totally real.
Since the torus T(Q) is the restriction of scalars of E', we obtain the following.

Theorem 1.2. Let x be a character on an Q-anisotropic torus T(Q) ~ E' of mazimal R-rank.
Suppose for simplicity that E is a quadratic field extension of the totally real field F' of degree d.
The generating series

Z Oy Cu(9))g" = Oy (1, ,7,X) € Sa(To(N)) (1.13)

is the diagonal restriction of a Hilbert modular form Oy (11, ..., 7a,x) of parallel weight one for a
congruence subgroup of SLo(F').

If T(Q) ~ E! is an anisotropic torus attached to a product of field extensions E;/F;, the seesaw
argument is still valid. The right-hand side becomes a sum of products of diagonally restricted
Hilbert modular forms for SLa(F;). See Theorem 3.5 for the statement.

The theorem can be summarized by the following seesaw

SOv(Q) SLa(F)

>

B! SL»(Q).

Remark 1.3. 1. The condition p > g on the signature of Vg and on the maximality of the R-rank
of the torus are necessary to ensure that the cycle Cy, has dimension ¢ and can be paired
with the Kudla-Millson form of degree q.

2. This construction does not generalize to the dual pair SOy x Sp,.(Q) for r > 1, since the tori
do not give cycles of appropriate dimension. As we will see, the dimension of the cycles Cy,
satisfies dimg Cy, < g with equality exactly when T is maximally R-split. On the other hand,
when r > 1 the Kudla-Millson forms are not of degree ¢, but of degree rq. Hence, the only
way the degree of the forms can match the dimension of the cycles is when r = 1.

1.3. Spans of diagonal restrictions and toric cycles. Let us now add the conditions that V'
is of dimension p + ¢ > 4, where ¢ is odd, and that the lattice L is of level 1 (unimodular). Let S
be the set of all characters y that are as above, odd and of finite order. Let

St =span{0,(Cy)| x € S} C S4(SL2(Z)) (1.14)

be the subspace of cusp forms spanned by the diagonal restrictions ©,(C,). Several authors
(including [Li17],[BL22],[KP19] and [Yan05] ) have considered spans of diagonal restrictions of
Hilbert modular forms, mainly in the case of Hilbert-Eisenstein series.

On the other hand, is also natural to ask what part of the homology is spanned by cycles
associated to the torus T. Let us define the subspace

Hr =span{C, |x € S} C H,(Y,C) (1.15)



spanned by the toric cycles C. Let us also define
Heyele = span{C,, (@)} C Hpq—q(Y,C) (1.16)
to be the span of the special cycles. The orthogonal complement is the set

HE .. ={C € H,(Y,C)|(C,Cpn(p)) =0 for all n € No} € H,(Y,C). (1.17)

cycle

With the previous conditions on the signature of V', the adjoint of the Kudla-Millson lift is
injective by a result of Bruinier-Funke [BF10]. In section 5 we deduce the following.

Corollary 1.2.1. Suppose that V is of dimension p+ q > 4, where p > q¢ > 0 and q odd. Then
dim (S4(SL2(Z))) — dim(S7) = dim (Hy(Y,C)) — dim (span{Hg .., Hr}) . (1.18)

In particular, we would have S;(SL2(Z)) = St if and only if H,(Y,C) = span{HCJg,Cle, Hr}.

1.4. Examples. Let us consider some examples in signature (2,2). Let V = Mato(Q) be the
quadratic space with the quadratic form det. For a suitable lattice L, the locally symmetric space
attached to SO(2,2) is Yy(p) x Yo(p).

Let us first consider the étale algebra E = Q(v/D) x Q(v/D) with involution being the Galois
involution in both factors. After twisting by suitable characters, the toric cycle attached to T(Q) ~
E'is vy X 7y, where vy and 7y are both attached to the same real quadratic field K = Q(\/ﬁ),
where p is split. This setting was considered by Darmon-Harris-Rotger-Venkatesh in [Dar+22],
where they show that the generating series

o0

Oy @y (T) = Z (v, Toyer ) 4" (1.19)

n=1

is the diagonal restriction of a 'Hilbert modular form’ for SLy(Q) x SL2(Q). In fact, they prove
a more precise result as they express the generating series as the trace from level pD? to p of a
product of two weight one modular forms. The corresponding seesaw is

S0(2,2) SL2(Q) x SL2(Q)

Q(vD)' x Q(VD)' SL2(Q),
where Q(v/D)! are the elements of norm 1 in Q(v/D).

Similarly, we can consider a biquadratic field E = Q(v/D1, v/D2) with the involution that sends
v D; to —v/D;. The corresponding seesaw

SO(2,2) SLa(Q(vD1D2))

| >

Q(VD1, VDo) SL2(Q),
where Q(v/Dy, \/Dg)l are the elements of norm 1. The image of the torus Q(v/Dj, \/DQ)l is a

product of geodesics v1 X v2 where the geodesics are attached to Q(v/D;) and Q(1/D3) respectively.
We discuss this example in Section 4.

Acknowledgments. We thank Henri Darmon for suggesting to look at these seesaws, Pierre
Charollois and Luis Garcia for helpful comments.

2. ETALE ALGEBRAS WITH INVOLUTIONS AND ALGEBRAIC TORI

In this section, we review the relations between algebraic tori in orthogonal groups and étale
algebras with involutions, as explained in [BCKMO03|, [BF14] and [DGL23|.



2.0.1. Let E be a commutative Q-algebra of even dimension dimg(E) = 2d. It is said to be étale

over Qif E®@ Q ~ @Zd. Equivalently, the étale algebra E is a product of finitely many number
fields R. Let € be a Q-linear involution on E and let F' := E€ be the subalgebra fixed by e. We
have the following three types
i) the involution € preserves the factor R and R|6 #id,
1) the involution e does not preserve the factor R. In that case there is another factor R’ such
that R = ¢(R) ~ R,
i4i) the involution e preserves the factor R and RL =id.

Hence we can write F as a sum F = F; X --- X E, of e-invariant subalgebras, where E; = R is
a field in case ¢) and éii), and E; = R x R’ is a product of fields in case 7). The fixed algebra
F' is then the sum F' = Fy x --- x F, where I; = E{ is a number field. From now on suppose

furthermore that F has degree [E: Q] over Q. In that case we only have case i) or ii) and we
deduce the following.

Proposition 2.1. There is an element § € F* such that E is isomorphic to F[0]/(6* — &) and
the involution € sends 6 to —0.

Proof. For the case i) the field extension E;/F; is of degree 2. Hence we have E; ~ F;[0;]/(6% — 6;)
for some §; in F*\ (FiX)Q. In case i) note we can identify E; ~ F; x F;. Then we can take §; = 1
so that we get an isomorphism

Fi[0:]/(67 1) — E; 0; — (—1,1). (2.1)

O

2.1. Etale algebras as quadratic spaces. For « in F* we define a e-hermitian form on E by
ExFE—E, (z,y) — axe(y). (2.2)

It is preserved by the elements of norm 1
E'={xz€ E*| ze(x) =1}. (2.3)

Suppose that F is a field and E/F is an étale algebra. As mentionned in the introduction, the
case where £ = F x F' is the split algebra will be excluded, hence we will restrict ourselves to
the case where E = F(0) is a quadratic field extension of F. In order to work with orthogonal
groups instead of unitary groups, we view E as an F-vector space and let @), be the quadratic
form obtained by composing the hermitian form with the trace

Quo: ExE — F, (z,y) — aTrg/p ze(y) = a(ze(y) + e(z)y). (2.4)

Let SOg be the orthogonal group of this quadratic space. We view it as an algebraic group over
F whose F-points are

SOg(F) = {g € GL2(F)| Qa(g97, 9y) = Qu(z,y)} . (2.5)

Proposition 2.2. Let § € F* be such that E = F(0) with 6> = 6. The map

E' — S0gp(F), x+yb— (; yﬂf) (2.6)

is a group isomorphism. Furthermore, the restriction of scalars Resp/q SOg is a Q-torus of rank

d.

Proof. The parameter « is irrelevant here so let us assume o = 1. With respect to the basis F-basis
{1,0} of E, the quadratic form @, has Gram matrix diag(1, —4). It is clear that E' C SOg(F).

. _fa b .. (1 0 (1 0N . .
On the other hand, for a matrix g = <c d> the condition g <0 —5) g = (O —6) implies

a®>—c% =1, b2 —d?6 = —§ and ab = cdd. By multiplying the last equation by d on both sides and



using that ad — bc = 1 we find that b = ¢§. Using the last equation again, we find that ab = db. If
b # 0, this implies a = d. If b = 0 one can easily check that g = +15, hence a = d = £1.
Over Q, we have an isomorphism of quadratic space

E®Q— FeQoFeQ
x4 0y — (z + Oy, x — Oy). (2.7)

On the other hand, the orthogonal group SOg((F ® Q)?) of (F ® Q)? is isomorphic to (F ® Q)*,
where the isomorphism is given by the map

(FeQ)* — SO(F2Q)?)
A
A —s (0 A01>. 2.8)
Hence (RespqSOg)(Q) ~ (F ® Q)* ~ @d, is a torus of rank d. O

2.1.1. By restriction of scalars from F' to Q we obtain a 2d-dimensional quadratic space (V,Q) =
Resp/q(F,Qq) over Q, where V = E ~ Q?¢ and the quadratic form is defined by

Q(z,y) = Trr/goQa(z,y). (2.9)

In particular, we have Q(z,z) = Trp/g(aNg/p(x)). Moreover, by restriction of scalars we have
an embedding

SOx(F) — SOy (Q). (2.10)

By Proposition 2.2, the image of the embedding is an algebraic Q-torus of rank d. Conversely, if
T is a maximal Q-torus in SOy, then there is an étale algebra E such that E! ~ SOg(F) ~ T(Q).
We will recall the proof in Subsection 2.2 (see Proposition 2.4).

Remark 2.1. By abuse of notation we will occasionally also denote by @, the quadratic form over
Q, instead of Q. It should always be clear from the context if we consider the quadratic space over
F or over Q.

2.1.2. Let us now consider a general étale algebra E/F, with e-invariant factors E;/F;. For any
place v of QQ, the involution on E extends to an involution €, on Eg, = E®Q, with fixed subalgebra
Fy, = F®Q,. In the same way as before, the algebra with involution £ ® Q, is a 2d-dimensional
quadratic space over Q,. Let w be a place of F. Let us write F,, = (F}),, and Ey, = (E;), for the
completions at w. We set F, := Hv|w FE, and F, := Hv‘w F,,, which are naturally isomorphic to
Lo, and Fgp, respectively.

Let w be a non-archimedean place of F;, where E; = F;(6;). Then, either E,, = F,(6;) is
non-split and the involution sends 6; to —6;, or E,, = F,, X F, is split and the involution permutes
the two factors. At a non-split place w we have

SOg(Fu) ={z € E;|Ng, /r,(z) =1}. (2.11)

On the other hand, if w is split we have SOg(F,,) ~ FX.
Define the following sets of archimedean places of F":

Sy = { real embeddings of F' that extend to real embeddings of E},
Sg == { real embeddings of F' that extend to complex embeddings of E}, (2.12)
S3 := { (pairs) of complex embeddings of F'}.

We denote the cardinality of those sets by
ng = ‘Skl (2.13)

We have d = ny + ns + 2n3. For any archimedean place o of F', the completion F,/F, is an étale
algebra with involution and we have the following possibilities:



1. F, =R and F, = R x R is the split algebra where the involution ¢ permutes the two factors.
In that case, we have E! ~ SOg(F,) ~ R*. This happens exactly when o € S;.

2. F, =R and E, = C is the algebra where the involution € is complex conjugation. In that
case, we have El ~ SOg(F,) ~ S* where S' C C* is the unit circle. This happens when
exactly when o € S5.

3. F, = Cand E, = CxC is the split algebra where the involution ¢ permutes the two factors.In
that case, we have E! ~ SOg(F,) ~ C*. This happens for any complex place o € S3 of F.

By taking the product of all archimedean places we get

EL = (R*)™ x (S1)"2 x (C*)"s = (R*)™Hms x (§hynatnz, (2.14)

Let Ew = [[, Eo and Foo = [],cqFs =~ C™ x R"2+73 The embeddings of E give us
the natural isomophism Egr =~ [[  E, of algebras with involutions, that restricts to the natural
algebra isomorphism Fg ~ F,,. Hence, we have an isomorphism of quadratic spaces (Fg, Q) ~
D(Es, Go(a)) Where Quay(z,y) = Trg, /p, (0(a)ze(y)). For a € F* let 7o (resp. s,) be the
number of embeddings ¢ in S5 such that o(«) is positive (resp. negative). Note that no = 7o + Sq4-

Proposition 2.3. The signature of Eg is (n1 + 2rq + 2n3,n1 + 284 + 2n3).

Proof. We have an isomorphism of quadratic spaces (Egr, Qa) ~ @(Ey, Qo(a)). We only have to
find the signature at each place o.
1. If 0 € S, then E, = R x R and the involution permutes the two factors. Hence

Qoo ((2’2) , <Z>> — o(a)(trth + thts) (2.15)

and E, has signature (1,1).
2. If 0 € Sy, then E, = C ~ R? and the involution is the complex conjugation. Hence

Qo(a) (21,22) = o(a) Trer(2122) = o(a) [Re(21) Re(z2) + Im(21) Im(22)], (2.16)

and the signature of E, is (2,0) if o(a) > 0 and (0, 2) if () < 0.
3. If 0 € S3, then E, = C x C and the involution permutes the two factors. Hence

Qo(a) ((Zﬁ) ) (5;)) = o(a)(z21wz + z2w1) (2.17)

and E, has signature (2,2).
It follows that the signature of Ey is

n1(1,1) +74(2,0) 4+ $4(0,2) + n3(2,2) = (n1 + 2r + 203,01 + 284 + 2n3) (2.18)

O

2.2. Etale algebras of maximal tori. Let (V,Q) be a non-degenerate quadratic Q-space of
dimension 2d with orthogonal group SOy . An algebraic Q-group T C SOy is a Q-torus of rank a
if T(Q@) ~Q". If K is a field extension of Q, we say that T is K-split if T(K) ~ K®. A torus T in
the orthogonal group SOy is maximal if its rank is equal to dim(V). The dimension of maximal
K-split torus T C T is called the K-rank of T. The orthogonal group SOy is of R-rank ¢ (since
we assume that p > ¢). Hence, if T is of maximal R-rank, then the R-rank of T is g.

2.2.1. Consider the Q-algebra End(V) of Q-linear endomorphism of V. We view SOy C GLag,
so that we view End(V) C Mato,(Q). It is equipped with a natural involution eg defined by

Qv w) = Qv, eq(x)w)

for x € E. Explicitely we have eg(z) = AéleAQ where A denotes the Gram matrix of @ and =T
is the transpose of z. Let Er C End(V') be the subalgebra consisting of all the Q-endomorphisms
x € End(V) such that xt = tx for any ¢t € T(Q). We will denote it simply by E since there is no
risk of confusion, and let F' be the subalgebra fixed by eg. We view T(Q) C SOy (Q) C End(V).
The following proposition is proved in [BCKMO03, Proposition. 3.3].



Proposition 2.4. Let T be a mazimal Q-torus in SOy. The algebra (E, eq) is an étale algebra
with involution. We have 2dimg F' = dimg F.

_ —2d
Proof. Over Q, the quadratic space V is isomorphic to Q2 with quadratic form Q(v,v) = v1vg41+

. . . 0 1
VoUgya + + -+ + VqUaq i.e. with Gram matrix < d

1 0 ) With respect to this quadratic form, the
d

torus can be diagonalized in SOy (Q) to
J— . _ _ J— —d
T(Q) ~ { diag(t1,..., ta, t] Loty 1)| t;€Q}~Q (2.19)

Hence, the centralizer £ ® Q ~ @2d consists of diagonal matrices in End(V). Thus, E is an étale

algebra. We have eg(g) = ¢g~! for any g € SOy(Q). In particular, we have eg(t) = ¢! for any
t € T(Q). Hence, the involution € preserves E since for any x € E we have

EQ(:L')t = GQ(.’Et_l) = GQ(t_ll') = teQ(x). (2.20)

Moreover, the involution permutes a; with b; in diag(ay, ..., aq,b1,...,bs) € E®Q. It follows that

J— . J— 7d
FoQ~ {dlag(al,...,ad,al,...,ad)\ai € Q} ~Q (2.21)
and 2dimg F' = dimg F = 2d. ]

2.2.2. For a € F* we have the quadratic form

Qu: ExE—F,  (0,y) — Qala,y) = aTrpp(veg(y)) (2.22)

that we already defined in (2.9). The restriction of scalars Resg/q (£, Qn) is the quadratic Q-vector
space where the quadratic form is Trp/g 0Qn. Let us now prove that T(Q) ~ E', where E = Er
is the étale algebra with involution defined above.

Proposition 2.5. We have Resp/g(E,Qa) ~ (V,Q) for some o in F*. Moreover, the torus
T(Q) is isomorphic to SOg(F).

Proof. The algebra E acts faithfully on V. Since they have the same dimension, V' is an E-module
of rank 1. Let vy in V be a module generator, then we have an isomorphism of Q vector spaces
E ~V given by e — evyg. We want to check that this is an isomorphism of quadratic spaces.

The quadratic form @ induces an isomorphism of E with its dual

fQ2 EF — Ev = HOHlQ(E,@)
z+— fol(z)y] = Q(zvo, yvo). (2.23)

The map is E-linear in the sense that for every e € E we have fg(ex) = eg(e) fo(x). On the other
hand, the trace form also induces an E-linear isomorphism of E with its dual

fr: E— EY = Homg(E,Q)
z— foe(2)ly] = Trpjg(req(y)). (2.24)
It is also linear in the sense that fr.(ex) = eg(e) frv(z). Hence fr,' o fq is an E-linear automorphism

of F, satisfying (f5! o fo)(ze) = z(fr, o fg)(e). Tt follows that f' o fo(x) = ax for some nonzero
ain E, so that fgo(x) = fr.(azx). Hence, for any z,y in E

Q(zvg, yvo) = TYF/Q(O‘“Q (v))- (2.25)

By the symmetry of (), after setting y = 1 we have

0 = Q(zvo, vo) — Q(vo, Tvp)
= Trr/g(az) — Trr/g(aeq(z))
= Trp/g(ax) — Trp/g(eq(a)r)
= Trp/g((a — eq(a))z) (2.26)



for any z in F. Since the trace form is non-degenerate, it follows that « is in F'*.

Finally, let us prove that T(Q) ~ SOg(F). We have shown that E! ~ SOg(F). On the
one hand, for t € T(Q) we have Q(tv,w) = Q(v,t~*w). On the other hand, by definition of
the involution € we have Q(tv,w) = Q(v,eq(t)w). Hence eq(t) =t~ and t € E'. This shows
the inclusion T(Q) C E', and the equality follows from the fact that T(Q) is a maximal Q-torus
contained in the (also maximal) torus E', see Proposition 2.2. O

Proposition 2.6. If T has mazimal R-rank, then ny = q and F is totally real.

Proof. From Proposition 2.5 we have T(Q) ~ SOg(F) ~ E'. Let n; be defined as in (2.13): n;
is the number of real embedding of F' that extend to real embeddings of E, nsy is the number of
real embeddings of F' that extend to a complex embedding of E and ns is the number of (pairs)
of complex embeddings of F. By (2.14), we have T(R) ~ E. = (R*)™+7s x (§1)m+n2 hence
a =mn1 +ng and b = n; + ny. On the other hand, by Proposition 2.3, the signature of Vg = Ey is
(p,q) = (n1 + 214 + 2n3,n1 + 284 + 2n3), where r,, (respectively s,) is the number of places in Sy
for which o(«) is positive (respectively negative). So if T has maximal R-rank, then a = ¢ and we
must have n3 = s, = 0. L

3. KuDLA-MILLSON THETA CORRESPONDENCE

3.1. Weil representation. Let (7', @) be a quadratic space of dimension 2m over a totally real
field £ of dimension k. Let SOs be the orthogonal group of 7°. We will consider the following two
cases:

— the field is 2 = Q of degree k = 1 and the quadratic space (77, @) is an arbitrary quadratic
space (V, @) like in the introduction, of dimension 2m = 2d. The group SO is the orthogonal
group SOy.

— the field 2 = F is an arbitrary totally real field of degree k = d. The quadratic space is
7 = FE, where E is an étale algebra viewed as quadratic space of dimension 2m = 2 over F,
and equipped with the quadratic form Q.. The orthogonal group SOy = SO ~ E! is a
torus.

3.11. Let W = 7 ®% ~ ¥ ® A2 be the 4m-dimensional symplectic space over £ with the

symplectic form
v w
RB ((é) ) (wi)) = 0@(v1,w2) — (w1, v2). (3.1)

Its symplectic group is Sp(#’) ~ Sp,,,(#£). At a place w of £, let 7, = 7" ® k,, be the com-
pletion. There is a local projective unitary representation w on the space §(%,) of Schwartz-
Bruhat functions, called the Weil representation. It is a projective representation in the sense

w(g192) = c(g1, g2)w(g1)w(ge) for some complex cocycle ¢(g1,g2) satisfying |c(g1, g2)| = 1. After
passing to the adéles, we get a unitary representation

w: Spy, (£) — U(S (7)), (32)
which is again only projective. However, for certain subgroups of Sp(%} ) the cocycle is trivial and

we obtain a true (i.e. non-projective) representation. Let us consider some special cases and give
some concrete formulas for the Weil representation.

3.1.2. Consider the subgroup SLs(#£) C Spy,,,(#), embedded as

10



The subgroup SOy (%) C Spy,, (%), embedded as

he—s <g 2) (3.4)

commutes with SLy(#). Hence, we can embed the product SLy(#£) x SOy (#£) as a subgroup of
SPam (#). After passing to the adéles, the projective representation of Spy,,, (Az) restricts to a true
representation

w: SLa(Ag) x SOy (Ag) — S(74). (3.5)

Let us describe this action more precisely, on a Schwartz function ¢ = g ®¢¢ € §(72)®S (“7@)
For h € SO (Ag), we have

(W(1, h)p)(v) = p(h™ ). (3.6)
Suppose we can decompose the Schwartz function as ¢ = ®y,p,, where ¢, is in §(%,,) and the
product is over places of £. Let us write down the local Weil representation of SLa(#£.,) on ¢,,. If

g= <g agl) for some a € £, then

(w(g, De)(v) = laly u(av). 3.7)

Ifg= ((1] l;) for some b € £,,, then

(W(g, D)(v) = X (bQ(v, v))p(v). (3.8)

. . 0 -1
Finally, if S = (1 0 ), then

WS90 = [ ulwn(@.u)du,. (39)
Remark 3.1. The character x,, is defined as follows. We fix the additive character e, on Q, defined
by

e2ine ifv=00
ep(x) = {em{m}p fo—p, (3.10)

where {z}, is the fractional part of z in Q,. We extend it to a character x,, on £, by setting
Xw = €y 0 Trg g, The Haar measure du,, is the unique Haar measure on %£,, which is self dual
with respect to x,,. This is the Haar measure normalized such that the Fourier inversion holds.

3.2. (Co)homology of adelic spaces. For every real place o of 2, let 7, = 7" ®, R and
7 = @%Z,. It is a real quadratic space, and let (p,,q,) be its signature. Let @} be the
associated connected symmetric space, that can be described as one of the two connected of the
Grassmanian 9,, of ¢,-dimensional oriented subspaces z C 7, that are negative, i.e. @|z < 0. We
set 2T = [[ D+, where the product ranges over the archimedean places of £ for which p,g, is
nonzero'. The dimension of D is p, s, so that the dimension of 27 is > o Pols- At every place o
let %, be the completion of £, so that £, ~ [[, #,. Since we assumed that £ only has real places,
we have £, ~ R. At the level of the orthogonal group, we have SOy (£+) =~ [[ SO» (%), where
SOy (#4) ~ SO(ps,¢s). The connected component SOy (£)" =[], SO(ps,qs)" of the identity
acts transitively on @*. Let K., be a maximal connected compact subgroup of SOy (%£.,)7", that

is isomorphic to [[, SO(ps) x SO(g,). Hence
DT 2807 (£oo) T /Koo > [[SO(Ps 40) T/ SO(po) x SO(gs)- (3.11)

Remark 3.2. Note that when 2 = Q and 7" = V, then for the unique real place we have 9, = 9,
where

P = {(z,0)| 2 C Vg, dim(z) =g¢, Q’z < 0, o an orientation of z} C Gry(Vg) (3.12)

is the space mentionned in the introduction. It has two connected components (corresponding to
the two choices of orientations) and 27 is one of them.

'In the case where p, = 0 or g, = 0, the manifold @, is just a point.
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3.2.1. Let ¢y € &(7) be a finite Schwartz function, let K C SOW(@) be an open compact
preserving ¢ in the sense that w(k)gs = ¢y. Let K = KKy and consider the adelic space

Y = S04 (%)\ SO7(Ag) /K ~ SOz (£)\D x SO (%) /K. (3.13)
Let € be the finite group of double cosets
@ = SOy (£)"\ SOy (%) /K. (3.14)
Then we have
SOy (%) = | | 8O+ (#)*hiK;. (3.15)
Ie®

where hy € Socy(g) are representants. The adelic space is a finite union of locally symmetric
spaces

Y =||r\2* (3.16)
Ic®

where Ty := hyKh;' NSOy (£)F.

3.2.2. The space of differential r-forms on Y is defined by

O(Y) =P T \2). (3.17)
1c%

-~ -~

Let C*(SO% (#)) be the space of locally constant functions on SOy (#£). The map

}sozf—(ﬁ)xkf

[Qr(gzﬂ ®g C=(SO09(£)) L Q(Y) (3.18)

sending n® f to Y, f(hr)n is an isomorphism, where C>(SOy (%)) is the space of locally constant
functions. We define the homology and cohomology of Y by

H(Y)=@H T\2%), H(Y)=HT\2"), (3.19)
1€% 1c%

and similarly for the compactly supported cohomology. The integral of a closed form n =3, ¢ nr
over a cycle C' =) ;. Cr in Y is then defined by

J=x

Ie®

/C e (3.20)

This pairing induces the Poincaré duality H,.(Y) ~ H" (Y)Y ~ Hf;hm(y)_r(Y).
For top degree forms, when r» = dim(Y"), the choice of an orientation g gives an isomorphism

O (SO7 (£oo)T) = — QIO () (3.21)

that sends a smooth K .-invariant function f to a top degree form fp. Combining the two isomor-
phisms (3.18) and (3.21), we get the following isomorphism for top degree forms

C™ (SO (£)\ SOz (Asg)) — QUm0 (y), (3.22)

sending a function f to the form ;o f(-,hr)o. When 7 is a top degree form, we can consider
the integral over Y. Suppose that the form n € Q™) (Y") correspond to a function f in the
isomorphism (3.22). Then

c
- 7/ £(9)dg 3.23
/Y vol(K) SOy (%)\ SOy (Ag) ( ( |

where vol(K) is the volume of K with respect to a Haar mesure dg on SO (Ax), and ¢ > 0 is a
constant dependant on the choice of the Haar measure but independant of K. We suppose that
the Haar measure is chosen such that ¢ = 1.

12



3.3. Kudla-Millson theta lift. Let (p,q) be the signature of 7 = @ 7,. In [KM86; KMS87]
Kudla and Millson define a form

SOy (%e0)T

e € QUDT, 8(78))3507 =) ~ [01(DY) © §(T)] (3.24)

valued in the Schwartz space &(Zr). More precisely, at every place o there is a form ¢%,, €
04 (9:,5(%))80%(’%0)+ such that pxm(v) = /\];:1 0% (o(v)). These forms (hence also wrm)
are closed i.e. dpfy(v) =0 for any v in 7', and SOy (£,)*-invariant in the sense that

h*ofn(v) = pn (o) (3.25)
for any h in SOy (%£,)" and v in 7". This extends to the invariance property
W erm(v) = prm(h™ ) (3.26)

for any h in SOy (£.)". In particular, the Kudla-Millson form is SOg (%) -invariant. Further-
more, it satifies

wlko)oron = [ oren .
where
. cos(f,) sin(f,) i
fo = ((-sin(ﬁa) cos(og)»a €50(2)". (3.28)

One of the main features of the Kudla-Millson form is its Thom form property. We will come back
to this in Subsection 3.6.

3.3.1. Let us now define the Kudla-Millson theta series. Let ¢ € &(7}) be the same Schwartz

-~

function as above, and let K C SLa(#) be an open compact satisfying w(k)ps(v) = ¢y (v) for
every k € K } Hence, the Schwartz function ¢y is Ky x K } invariant by the Weil representation.
We define

= xM ® ¢f € Q(DT) ® S(Va,) (3.29)

-~

For g € SLy(Ag) and hy € SOy (£), the Kudla-Millson theta series is

Ou(g,hy) =Y (w(g.hy)p)(v) € C (SLa(#)\ SLa(As)) © QU(Y). (3.30)
veEY

When g is fixed, we can view
Ou(g) = BOy(g,-) € QYY) (3.31)

as a differential form on Y. Let I" := SLy(%) N K}. For a point (71,...,7%) € % let goo =
(Grys-- > 9r,) € SLa(R)¥ where

Gr, = (\/(')yi(7 wla//\jyi?) S SLQ(R), (332)

and 7, = T, + iy,. Let

_m

Ou(T1y- s Th) = (W1 YUr)” 2 Op(goo, 1) € QU(Y), (3.33)

where we recall that m = dim(?"). By the work of Kudla and Millson - building on Weil’s
construction of automorphic forms - the form O, transforms like a Hilbert modular form of parallel

weight m and level IV, in the variables 71, ...,7;. They also show that the form is holomorphic in
cohomology, in the sense that for every o we have
0 O, ( )=d (3.34)
— Tiyeony T) = dNo .
aﬁ e\71, s Tk ui
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for some 7, € Q971(Y). Furthermore, the form O, is closed, since pxm is. Hence, we can now
view O, as an element

@tp € Hq(Y) ® M(m,~~ ,m) (F/) (3'35)

where My, ... ) (I) is the space of Hilbert modular forms of parallel weight m and level IT". In
particular, if C € Z,(Y) is a cycle, then

O,(m,...,m,C) :/ Ou(T1,...,Tk)
C

= / 9¢(T1,~--,Tk,h1) S M(m7..,7m)(1“’). (336)
rew’C1
Equivalently, if nc € Qgim(y)_q(Y) is a compactly supported form of complementary degree that
is a Poincaré dual to C', then
@99(7’1, ey Thy O) = / @Lp(ﬁ, - ,Tk) ANnc € M(m).., )m)(F’). (3.37)
Y

3.3.2. Let us compute the level IV, in the case # = Q. Let L C V be an even integral lattice, in
the sense that Q(L, L) C 2Z. Consider the dual lattice

LY ={veV |Q(v,w) €Z for every w € L}. (3.38)

Note that L is a finite index subgroup of LV, and let N := [LY: L] be the level of L.
Let oy = ®,,¢p € S(Vg) be the finite Schwartz function where ¢, = 17, € $(Vg,) is the

characteristic function of the lattice L, = L®zZ, C Vg,. Note that L = VN L where L = IL, Lp.
We can define the dual lattice L) and the level N, := [L: L,] similarly. Note that N, = 1 for
almost all primes p and that N = ]_[p N,.

Proposition 3.1. The modular form ©,(t,C) is of level To(N).

Proof. We have I'o(N) = GLa(Q)* N Ko(N) where

Ko(N) = {(‘é Z) € GLy(Z), N | c}. (3.39)

Thus, we have to show that ¢, is invariant by Ko(N), = K¢(N,), C GL2(Z,) under the Weil
representation. The group GL2(Z,) is generated by matrices of the form

(96 267

w(S)pp = vol(Lp)lLy. (3.41)

Note that the action of S is

In particular, if N, = 1, we have L, = L and vol(L,) = vol(L;)~* = vol(L,)~" = 1. Hence, the
Schwartz function is preserved by S when IV, = 1. It is immediate to check that it is also invariant
under the diagonal and unipotent matrices in (3.40), hence ¢, is preserved by Ko(N), = GL2(Z,)
when N, = 1. Suppose N, = p" for some r > 0 and write a matrix in Ko(N), as

a b (1 Ec a b
(p’"c d):51<0 1)5(0 d_bcpr>. (3.42)

Note that a € Z. Let us denote by g; and go the two matrices in GL2(Z,) such that the right
handside of (3.42) is S71g15¢g2. A direct computation shows that ¢p is invariant by g», and that
w(S)¢p = vol(Lp)1Ly is invariant under g;. Hence we have w(S7191892)0p = 0p- O

]
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3.4. Restriction of scalars and seesaw. We can now consider the theta lift described in the
previous paragraph in two cases.

Remark 3.3 (Remark on the notation). In section 3.1 we introduced the notations @, ¥ and €
attached to the quadratic space 7” where 7 is either the quadratic space V over Q or the quadratic
space E over F. In the later case, we will replace the notation by @, Y , €r and K, as used
in the introduction.

3.4.1. First, let us consider the case where # = Q and 7" = V. The symplectic space is # ~ Q*?
(recall that the degree of F'is d). We have the Weil representation

Wyt SLa(A) x SOy (A) — S(V2). (3.43)

Let ¢y = 17 € (V) be as previously, the characteristic function of an even integral lattice of

level N. Let ¢ = ol ® ¢, where iy € Q4(D7T) is the Kudla-Millson form on @*. In this
setting, the Kudla-Millson lift is

O,: Hy(Y) — My(To(N)). (3.44)

3.4.2. Let us now consider the Kudla-Millson lift for the quadratic space (7, @) = (F,Q,). Let
us consider subsections 3.1 and 3.2 in the setting of this quadratic space of dimension m = 2 over
the totally real field £ = F of degree k = d. Recall that T(Q) ~ E' ~ SOg(F).

The symplectic space is # ~ F*, and we have a representation

Let T(R)T ~ SOg(Fgr)™ be the connected components of its real points. Since T is of maximal
real rank, we have ELT ~ T(R)T ~ (Rs¢)? x (S')*z" where S is the unit circle. The maximal

p—

compact subgroup in T(R)" is K7 =~ (S')*z", hence
25 =TR)" /K100 ~ (Rx0). (3.46)

We can view the Schwartz function ¢y € §(V3) used for the lift (3.44) as a finite Schwartz

function in ¢y € S(E) and set p = pE\ ® g, where pE\ € QU(DF) ~ QI(RL,) is the Kudla-
Millson form on P

Let Kty x Ky C SOg(F) x SLy(F) be the open compacts stabilizing ¢ under the Weil
representation, and let Y7 the locally symmetric space. Let 1 be the finite group of double cosets

%r = T(Q"\T(Q)/Krs = EVN\E' /K (3.47)

where EVF = E' N (EL)T ~ T(Q) N T(R)™" is the intersection with the connected component of
the identity. The space

Yr = T(Q\ T(A)/Kr ~ ENEL /Ky ~ EY\ ((R>o)q X El) fiey (3.48)
is a disjoint union of connected components
Yr= | | A\RL,. (3.49)
SN

where A :== T(Q)* N K. By [PR94, Theorem. 4.11, p. 208], the quotient Y7 is compact since
T(Q) ~ E! is Q-anisotropic. Then dim(Y7) = ¢ and the Kudla-Millson theta lift is

Op: Hy(Yr) — M1, 1)(I'), (3.50)

where I is a congruence subgroup of SLy(F).

We have H,(Yp,C) ~ C[&r]. Let Yr; be the connected component corresponding to I in
(3.49) and [Yp ;] € Hy(Yr ;) a fundamental class, i.e. a generator of Hy(Yr ,Z) ~ Z. Let xy be
the finite part of the Hecke character and suppose that x is trivial on K y. Hence, we can view
X as a function on €7 and define

Yyl =" xs(I)Yrs € Hy(Yr,C). (3.51)
I1€e6r
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We define the image of this class to be

Ou(T1, ,Tay X) = / O, (1, ,1q) € M(Lm,l)(lﬂ’). (3.52)
Y,

X

Note that 27 ~ SOg(R)" ~ (Rs0)?. By (3.22), the orientation dt* = dt; A--- Adt)} of Df,
where dt) = dtt—", identifies

C> (T(Q)\ T(A)"" ~ Q2(Yr). (3.53)

Hence, we can write

Ou(T1,+ ,Ta) = Op(T1, -+, Ta, t)dt™ € QI (Y7) (3.54)

for some smooth function éw(ﬁ, < Tg,) € C®(T(Q)\ T(A))ET. We can also write (3.52) as

1

A [ — A X M, Ind .
(—)W(Tla 7Td7X) VOI(KT) /f(@)\T(A) @90(7-1’ 7Td7t)X(t)dt € (1,...,1)( )7 (3 55)

where vol(Kr) is the volume with respect to the Haar measure d¢t* on T(A) ~ E}.

3.4.3. The seesaw identity is a way to relate the lifts (3.50) and (3.44). By restriction of scalars
from F to Q, we can embedd Sp,(F) in Sp,,(Q), as well as the subgroups forming the dual
pair SLa(Ap) x SOg(Ar). The image of these two subgroups satisfy SLy(Q) C SLo(F') and
SOg(F) C SOy (Q), where the latter inclusion is restriction of scalars. For the former embedding
of SLo(F') in Sp,,(Q), it is given by

SL2(F) < Sp4q(Q)
(¢ )= (4 o) o

where r: F'* — GL4(Q) is the regular representation. These two dual pairs form the seesaw

SOv(Q) SLo(F)
SOg(F) SL2(Q).

~ ~

We also had the pairs of open compact subgroups Ky x K} C SOy (Q) xSL2(Q) and Kr ¢ x K{F’f C

~

SOg (ﬁ ) x SLo(F') stabilizing ¢s. Suppose they are compatible with the embeddings in the sense

~

that K7y C KyNSOg(F) and K} C K ;NSL2(Q). After conjugating if necessary, we can assume
that the maximal compacts Ko, and K1 are chosen such that K NSOy (R)* = K1 . Then
the embedding of SOg in SOy induces an immersion

¢:Yp — Y. (3.57)
This immersion induces a pullback in cohomology
¢*: H1(Y,C) — HY(Yr,C), (3.58)
and a pushforward in homology
o5 Hy(Yr,C) — Hy(Y,C). (3.59)

On the other hand, the pullback by the diagonal inclusion of 5 in S X --- x S induces the
diagonal restriction

U My, 1y () — Mg(To(N)). (3.60)
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The seesaw identity relies on two observations. Firstly, the two Weil representations wy and
wg agree on their smallest common subgroups of both dual pairs, namely (SOg(F),SLy(Q)).
Secondly, the Kudla-Millson form has the functorial property that @KM‘ gt = @EM, see [Bra23b,

T

Equation. (5.10)]. Hence, the two kernels
O, € C™ (SL2(Q)\ SL2(A)) ® Q1Y) (3.61)
and
©, € O (SLa(F)\ SL2(Ar)) ® Q4(Yr) (3.62)
for E and V respectively, agree when restricted to
C* (SL2(Q)\ SL2(A)) ® Q4(Yr). (3.63)
We deduce the seesaw identity
COL(T1, ., Ta) = Ou(T,...,T) = §"O,(T). (3.64)

3.4.4. For a class I in the class group €7 of T we define the toric cycle
Crr=¢.Yrr € H(Y,Z) (3.65)
to be the pushforward of the fundamental class. We also define
Cy =Yy = > xs(I)Cry € Hy(Y,Z). (3.66)
S
We then have
0. r0 = [ Oun )= [ o= [ e.n (3.67)
Y, Yy ¢ Yy

X

which gives the seesaw identity

Ou(7 - 7x) = /C 0.(7). (3.68)

3.4.5. For now we have only considered the case where E is an extension of a field F', but we
want to consider more general étale algebras of the form F = F; x -+ X E,., together with an
involution fixing F' = F} X --- X F;.. Here each of the Fj is a totally real field of degree d;, that is
the fixed field of E;. Suppose that (V, Q) is the restriction of scalars of (E,Q,) from F to Q, as
in 2.1. Then V is a vector space of dimension 2d where d = dy + - -+ 4+ d,.. Furthermore, we can
split the quadratic space as V =V; @ --- ® V,., where V; is the restriction of scalars of F; from the
field F; to Q. We can restrict the embedding SOy (Q) < Sp,,;(Q) given in 3.4 to an embedding
SOy, (Q) x -+ x SOy..(Q) < Sp,;(Q). Its commutator is SL2(Q)” and we get a seesaw

SOv(Q) SL2(Q)"

| ==

SO, (Q) x --- x SO, (Q) SL2(Q).

Combining with previous seesaw, we then get

SOy (Q) SLo(F1) % -+ x SLa(F})

=

SOEl(Fl) X oo X SOET(FI) SLQ(Q)

Let oy € & (V@) be a finite Schwartz function. Suppose that ¢ is the characteristic function
of an even integral lattice of level N. Let ¢y = ¢y ® @5 and the associated theta lift

©,: HU(Y,C) — My(To(N)). (3.69)
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We have §(V5) ~ oS’(E) o~ &(El) ®-® &(Er) and so we can write s as a finite sum

B

with go "€ $(E;). Similarly, the character Y on T(Q)\ T(A) can be written as xy = y1 X -+ X Xr
where

xit Ti(@\ Ti(A) — C* (3.71)
and T;(Q) ~ E}. We set ¢ = QDI]?M ® go?’i, and as above we get a Hilbert modular form
Oupp.i(T1,- - Tas Xi) € M1, 1y(T}) (3.72)
of parallel weight one for a congruence subgroup I'; of SLa(OF,). We denote by
O, (T2, Xi) = Opsi(T,...,7,xi) € My, (T}, N SLa(Q)) (3.73)

its diagonal restriction, which is a modular form of weight d;.
By the functoriality of the Kudla-Millson we have

\4 E,
<'0KM|YE1 x--xYg, = QOKM A A PRM" (3.74)

We can deduce the following from Proposition 3.68.

Proposition 3.2. We have the seesaw identity

/@w Zew X1) O (T4, Xr). (3.75)
CX

3.5. Computations of the Hilbert modular form. Let us compute the Kudla-Millson form
PN = @KM|9§: € Qq(g;) (3.76)

Suppose that F is a field Since T is of maximal real rank, Ss is empty by Proposition 2.6. Recall
that ¢ = |S1| by Proposition 2.6. At a place o € Sa, the algebra is F, ~ C and the space @} is a
point. So the Kudla-Millson form is of degree 0 and is simply the Gaussian

i (v) = e7mIo Neo e () € (). (877)

At a place o € Sy, the algebra is E, ~ R x R and @] ~ R.g. An element v in E, is sent to
(ve,v)) in E,. The Kudla-Millson form (see [Bra23b|) is given by

- 4 o dta’
P (v) = VVIagle 1o (ot rtor)?) (: ¥ m;) o coi(oy) (3.78)

g

forv € E,.

3.5.1. We define a Schwartz function ¢, € S(Er) by ¢ = [, ¢o Where ¢, = p%\ when o is
in So, and

(Pg(l'7l'l) — /|aa|e—ﬂ\aa|<x2+($/)2) (l‘ + 33/) ) (379)
when o is in S;. Then, under the isomorphism C*(R%,) ~ Q%(2), we

(@ (900, Depin) (1) = (@(goos o) oo ) (v) L, (3.80)

for g € SLa(FRr). Note that since F is a field, any nonzero v € F must satisfy v,v,, # 0 at any
place o € Sy. Let 7 := (7)o, € S7 be the image of (i,...,7) by goo and write

Trp/g(Tm) ZTU’ITLU (3.81)

for m € F.
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Lemma 3.3. Suppose that E/F is a field extension. We have

/ W(Goos too ) Poo (V) Xoo (B)dEY, = )? (H sgn (v + v, > Zim Trr/q(rom)
EL

€S,

-

if m = Ng/ p(v) is totally positive, and the integral is 0 otherwise.

Proof. At a place o in Sy there is no integral, since @} is a point. At a place o in S; we have

i Loy (s dt,
/ W(1,te) o (Ve Vo )Xo (te)dt S = \/|ag|/ e mlacl((vate ™) +(trv;)?) (: —i—tﬂ){,) sgn, (ty)—=
El RX o

lo
o0
= d
=24/ |agvgvé|/ e~ lacvovg|(u+u?) (Sgniv”) +sgn(vff)u> Eu
0

after the substitution ¢, = 4/|2#|u. Note that the assumption that x,(t,) = sgn(t,) is crucial
here, since the integral would be 0 otherwise. After substituting 3 = u? we find that this integral
is

K1 (27]aguov,|) V| aovs vy | sgn(ve + v;) (3.82)

where K (w) = fooo e’w(Bﬂ*ﬂ)ﬂS% is the K-Bessel function. We deduce that the integral vanishes
when m, = v,v,, is negative at some place i.e. when m is not totally positive. Using the fact that

Ki(w) = \/2Ze~v, equation (3.82) becomes

2sgn(v, 4 v/, )e 2l vovs (3.83)
Thus, taking the product over all the places of F' we get

/E1 W(1, too)Poo (V) Xoo (£)dEX, = (H sgn(vy + vl ) H e~ 2Tl vy, (3.84)

oEST 0c€S1US>
O
3.5.2. Recall that we can write
Ou(T1, -+, Ta) = Oy, -+ , T, t)dt* € QI(Yr). (3.85)
By the (3.80) we have
Op(r, - Tat) = (y1---9a) 2 Y (w(goes 1)) (v) (3.86)
veEE
where ¢ = poo @ @5 € S(Ag) is as above. We get
24 1
/s) =" ceyg) T2 t t)dt™
ol ) = s /E ORI gw(gm, o) (o) (1)
24 s 5
= m(iyl : 2 Z w(goo, 1)) (v)x(t)dt
T vEEN\E
— Z C((pm)(cx)eﬁﬂTrF/Q(‘ram) (387)
meF
where
(m)((] )= _ 27 Z / (v)x(t)dt*
cw X7 VO](KT) El goo’ vIx
veEN\E
Ng,r(v)=m
T Y O / o7 () (1)dt™ (3.88)
vol(Kr) ) Jen
vEEN\E o€S:
Ng/r(v)=m

Note that cgom)(CX) is nonzero only if m is totally positive.
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Theorem 3.4. Let x be a character on a anisotropic maximal Q-torus T of mazimal real Tank.
Then ©,(T,Cy) is a cusp form.

Proof. Suppose that F is a field, and E a quadratic field extension. Then the only v € E for which
Qa(v,v) = Ng,p(v,v) = 0is v = 0. Since v, = v, = 0, we see from (3.88) that the constant term

Cg}o) (Cy) is zero.

If E/F is a product of field extensions F;/F;, then by Proposition 3.2 the constant term is

dO(Cy) =D (C) e (Cy). (3.89)
B

In particular, there must be one of the fields F; that has a place ¢ € S;. For this index i, the

constant term cg]ﬁ)‘,i (Cy,) is zero for any . Hence (3.89) vanishes. O

3.6. Generating series of intersection numbers. Let (V,Q) be a quadratic space of even
dimension 2d over Q. Let L be an even integral lattice and ¢y = 17 € §(Vj) its characteristic
function. We describe the geometric features of the Kudla-Millson form, that allows us to have a
nice geometric interpretation of Kudla-Millson lift ©, (7, C') defined in (3.36).

3.6.1. Any vector v in V with Q(v,v) > 0 defines a submanifold of codimension ¢

2f ={z€2"|zCcv}. (3.90)
For every I in the group & of double cosets
% = SO0y (Q) "\ SOv (Q)/K; (3.91)
let I';,, be the stabilizer of v in I';. We denote by C,(hr) the image of the composition
Flﬂ,\gj — F[W\@Jr —I\2" =Y. (3.92)

Note that C,(h) only depends on the orbit of I';v. For a positive number n € Q, we define the
weighted cycles

Coler.hr) =Y @r(h;'0)Cy(hs) € Zpg—q(Y1,0Y1, Z) (3.93)
UEF]\V
Q(v,v)=2n
and
Cn(p) =Y Culps, h1) € Zpg—q(Y,0Y, 7). (3.94)
I1€¥%

Note that since L is assumed to be integral, the cycle C, () is only nonzero for n € Nxg.

3.6.2. Let us go back to the Kudla-Millson form introduced in 3.3 and described its geometric
features. Recall that the Kudla-Millson

>]SOV(R)+

e € QUDT, S(Vr))SOVET ~ [01(2) @ S(Va (3.95)

is a closed and SOy (R) T -invariant on 2F. In particular, if I' = T'; (for some I € &) is a congruence
subgroup of SOy (Q)™, then the form ¢k is T'y-invariant, where T, is in the stabilizer of v in T.
Hence, it descends to a form on T',\@™.

The main geometric feature of the Kudla-Millson form is the following Thom form property. Let
v be a positive vector. For any compactly supported form w € QP9~%(T,\@ ™) of complementary
degree we have

/ oM (V) Aw = " TRW) / w. (3.96)
L\2+ r\@;

In other words, the form
PO (v) = e o (v) (3.97)

is a Poincaré dual to I',\@,} in T',\2™.
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3.6.3. Note that for g, = (? ‘1[) we have

\+ é\

(@(gr ) (7) = "5 i (y/0)e Q) = 5 O fg)el ), (3.98)

We can rewrite the theta series (3.33) as

_Lﬂ — n n
Ou(T) =y~ 7" ) (wlgr)e)(v) =Y 05 (r)q (3.99)
veV n=0
by grouping the vectors of same length, where
or(r) = 3 wolvidesw) = S eolv/av). (3.100)
veV veL
Q(v,v)=2n Q(v,v)=2n

The form @E@n) (1) is closed, and for positive n it represents a Poincaré dual of the special cycle
Cy(¢) in H1(Y,C). When V is anisotropic, the constant term is g (0)ps(0) where ¢o(0) represents
the Euler class of the tautological bundle over @7

By the work of Kudla and Millson, if C' is a class in Hy(Y,Z) then the period

Op(7,C) = /CG“"(T) (3.101)

is a modular form of weight d = 214 of level T'o(IV). Since 950") (1) is a Poincaré dual to Cy,(p),
we get that

/C(%(T) =G0+ /C 0y (1)q" = ¢ (C) + D {C. Cul@))d"™ (3.102)

When the cycles C and C,, () intersect transversely, then (C, C,(¢)) is the signed intersection
number

3.6.4. Let E = F; X --- x E, with fixed subalgebra FF = F} x --- X F,.. So the torus is a product
T(Q) =T1(Q) x - - x T,.(Q) where T;(Q) ~ E}. Let x = x1 X -+ X X, where x;: T(Q)\ T(A) —
C*. T.hg Schwartz function splits as oy = >4 90?’1 ®-- @@ € S(E) @ ®@S(E,), as in
Proposition 3.2.

Theorem 3.5. We have

oo
Z<CX?C Z@wﬁ 1 ,X1 @LPB,T(TA,XT). (3103)
n=1

Proof. Tt follows from combining (3.102) with Proposition 3.2. O

Remark 3.4. In fact, one can show that that when F is a field, the cycles C, and C),(y) intersect
transversely.

4. EXAMPLE OF BIQUADRATIC FIELDS
We consider the setting of a split quadratic space of signature (2,2). The setting is similar to

[Bra23a|, but we consider the integral over a product of compact geodesics instead of the the
product of a compact geodesic with 7.

4.0.1. Consider the quadratic space (V,Q) = (Mat2(Q), 2 det) with the quadratic form

2det(z) = Tr(za™), (4.1)
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where the involution is

(Ccl Z) = <—dc ab) =5t (i Z)TS (4.2)

with S = —01 (1) and AT is the transpose of A. In particular, we have (zy)* = y*z*. As a
bilinear form, the quadratic form is

Qz,y) = Tr(zy") = Tr(z"y) (4.3)
where Tr is the matrix trace. The spin group GSpiny, (Q) is isomorphic to
GSpinV (Q) ~ GLQ (Q) Xdet GL2 (Q) (44)

and consists of matrices (g1, g2) with det(g;) = det(gz). It acts on Mato(Q) by p(g1,92)y = g1y95 "
and preserves the quadratic form det. The action of GSpiny (Q) on V induces a short exact
sequence

1 — Q¥ — GSpiny, (Q) 2= SOy (Q) — 1 (4.5)
where Q* is the center of GSpiny, (Q). We have
SOy (Q) ~ GSpiny, (Q)/Q™. (4.6)

The connected component GSpiny, (R)* = GLa(R) T X gt GLa(R) ™ consists of pairs of matrices
with (same) positive determinant. It acts transitively on J# x S by Mobius transformations
in both factors. Let Koo C GSpiny (R)" be the stabilizer of a point in J# x J#, so that S x
H ~ GSpinV(Rﬁ/f(oo. The stabilizer of (i,7) is R5o(SO(2) x SO(2)). We can extend the Weil
representation from the pair SOy (Q,) x SL2(Q,) to the pair GSpiny, (Q,) x SL2(Q,) by

w(g, h)p(x) = w(l, h)e(p(g) " x), (4.7)

where ¢ € §(Mat2(Q,)) is a Schwartz-Bruhat function.

4.1. Locally symmetric space. For the locally symmetric spaces and the special cycles in this
setting, we refer to [Bra23a| for more details. Let My(p) C Mata(Q) be the lattice

Mo(p) = { <Z Z) c Matz(Z)'p e, (a,p) = 1, ad — be > o} (4.8)

and

Mo(p) = { (‘C‘ Z) € Mats(Z)

ap €L}, ¢, € pr} ) (4.9)
that satisfies Mat2(Q)* N M\O(p) = My(p). Let 5 € §(Maty(Z)) be the characteristic function of

]\//.70 (p). It is preserved by the open compact Ky(p), where Ko (p) = Ko(p) Xdet Ko(p) is an open
compact in GSpiny,(Z) and

Ko(p) = { (‘CL Z) € GL(2)

€ pZ} . (4.10)

We set K == Ko Ko(p) and we have
Y = GSpiny (Q)\ GSpiny, (A)/K ~ Yo(p) x Yo(p)

~

by the strong approximation GL2(Q) = GL2(Q) " Ko (p).
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4.1.1. For a vector M in Mato(R) with positive determinant, the submanifold @5, in @ is the
image of the map

K —— H x H
z+— (Mz, 2). (4.11)
The special cycles C)y is the image of the immersion
L\ A — Yo(p) x Yo(p) (4.12)

where 'y == To(p) N M ~1T¢(p) M. Hence, the special cycles

Ch(p) = > Chr (4.13)

METo(p)\Mo(p)/To(p)
det(M)=n

are correspondences in Yy(p) x Yo(p).

4.2. Maximal torus in GSpiny. Let L = Q(v/D) be a real quadratic field of fundamental
discriminant D and suppose that p is split in L. Let Op be the ring of integers. Let us fix
an integer 7 € Z such that > = D (mod 4p). A form [a,b,c] = ax?® + bxy + cy?® of squarefree
discriminant D is called a Heegner form at p if it satisfies a = 0 (mod p) and b = r (mod p). Let
(u,v) be a positive fundamental solution to the Pell equation u? — Dv? = 1. To every primitive
Heegner form [a, b, c] at p of discriminant D = b? — 4ac we can associate the matrix

u—>bv —2cv
( 2av  u+ bv) € Lo(p). (4.14)

It is a generator of the (free part of) the orthogonal group of the quadratic form [a,b,c|. Its two
eigenvalues are e;, = u + v/ Dv and 621 = u — v/Dv, where ¢, is a fundamental unit in O/ . The

eigenvectors are
—b++VD ~b— VD
(419P). (0,07, w19

The embedding ¢: L — Maty(Q) given by
-b —2c
¢(VD) = € To(p) (4.16)
2a b
is optimal in the sense that ¢(L*) N Ty (p) = O} .
4.2.1. Instead of taking a maximal algebraic Q-torus T in SOy, let us start with a maximal Q

torus T in GSpiny,. The image T(Q) = p(T(Q)) in SOy (Q) is a maximal Q-torus and we have an
exact sequence

1 Q~ T(Q) —— T(Q) L. (4.17)

Let L, and Lo be two real quadratic fields with distinct discriminants D7 and Ds. Suppose that
p is split in both fields. Let [Ny,71,1] and [Na,72,1] be the two principal?> Heegner forms where

2
_ ri—Ds

N; = . Let ¢;: L; — Mat2(Q) be the two associated optimal embeddings, given by

D)= (3 7)€ Talo) (1.18)

Combining these two embeddings gives an embedding
¢1 X ¢ Li xn L3 — GSpiny (Q) (4.19)

and let T(Q) ~ LY xx L5 be the image of this embedding. The product L XN L consists of
elements (A1, A\2) in L1 x Ly with the same nonzero norm. We have T(Q) ~ L{* xn L5 /Q*.

2It represents the unit in the narrow class group.
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4.2.2. We want to find the étale algebra E associated to T. It is the centralizer of T in End(V) =
End(Mat»(Q)).

Lemma 4.1. The map

Mat(Q) ®q Mats(Q) — Endg(Maty(Q))
a®br— (a®b)x = axb” (4.20)

is an isomorphism of Q-algebras, where the involution b* is as in (4.2).

Proof. The map is a homomorphism of Q-algebras. Since they both have dimension 16, it is enough
to show surjectivity. Let E;; be the standard basis of Mat2(Q), that sends the basis vector e, in
Q? to dj=aei- A basis of Endg(Mat2(Q)) is %i’;ﬂ given by %i’}l(Eab) = 0a=i0p=; Eri. We have that
EyE;; = 61— Ey;. Hence, the element Ej; ® E;‘j acts by

(Bri @ Ej))Eap = EyiBapEji = da=iExp Eji = 6a=i0b=; Fpi- (4.21)

Hence Ej; ® E;; is sent to %i’}l,
We can then map GSpiny (Q) in Endg(Mat2(Q)) by sending (g1, g2) to det(g2)gr ® go2. The

map is compatible with the actions of GSpiny (Q) and Endg(V) on V

and the map is surjective. O

Proposition 4.2. The étale algebra is E ~ Q(v/D1,+/D3) and the involution is
6(\/ Dl, \/ DQ) = (7\/ Dl, —\/ Dg)
The fized subalgebra F is the totally real field Q(v/D1Ds).

Proof. Let Endg(Mat2(Q)) be the endomorphism ring of Maty(Q). Let ¢g be the involution on
Mat2(Q) ® Maty(Q) defined by

Q(a®b)z,y) = Q(z,eq(a®b)y). (4.22)

Since Q(z,y) = Tr(zy") = Tr(a"y), we have Q(zb,y) = Q(z,yb*)and Q(az,y) = Q(z,ay).
Hence, the involution is given by eg(a ® b) = a* ® b*. The image of T(Q) in Endg(Mat2(Q)) ~
Matg (Q) ®Q Mat2 (Q) is

J = {N(l‘g)lﬁl X xo € Matg(Q) (2%0) Matg((@) | (I’l,l'g) € Li< XN L;} . (423)

The étale algebra of endomorphisms commuting with J is £ = L1 ® Ly. Note that when restricted
to L; the involution z* acts like the Galois involution x +— 2/, i.e. we have ¢(a’) = ¢(z)*. Hence,
the involution eq restricted to E is eg(z1 ® x2) = o} ® x4 where z is the Galois conjugate of z;. It
follows that the étale algebra is E ~ Q(y/D1, /D) with the involution sending v/D; to —v/D;. O

4.2.3. The identity matrix xg = 15 is an Ly ® Lo module generator of Mato(Q). Hence, we have
an isomorphism of vector spaces,

E=L1®Ly, —> Matg(Q)
AL ® Ao —> d1(A1)2(A2)™. (4.24)

Thus, there exists an o € F* such that (F,Q,) ~ (Mat2(Q), det). At the level of the torus, we
have

Q(v/ D1,V Do) = T(Q) = p (LY xn L) (4.25)
4.2.4. Over R the embedding (4.19)becomes

(251 X ¢22 (L1 X R)X XN (L2 X R)X — GSPIHV(R) (426)
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Ao O
0 A
for an embedding o, where A’ is the Galois conjugate of A and

—r; +vVD; —r; —\D;
B; = ( N, ON, ) € GLy(R) ™. (4.27)

The embeddings can be diagonalized over R as ¢;(\) = B; < ) B; ! where \, = 0()\) € R

(If N; < 0 then we exchange the two columns to have positive determinant.) Let us fix the
point (z1,22) = (B1i, B2i). Its stabilizer in GSpiny, (R)" is Koo(21,22) = (B1, B2)Rs0(SO(2) x
SO(2))(By Y, By1). Over R, the torus can be diagonalized as

T(R) = (By, Bo)To(R)(B; Y, By 1) (4.28)

where To(R) ~ (R*)2 xyx (RX)? are pairs of diagonal matrices with same determinant. The

preimage K1 o = (¢1 X ¢2) 1 (Ks) of Ko by ¢1 X ¢ (tensored with R) is Rso(+1,+1). Hence
P}~ T(R)" /Koo ~ RZ,. (4.29)
At the level of the locally symmetric spaces, the embedding is

(¢1 % ¢2): (€7, x €2, )\RZ, — Yo(p) x Yo(p)
(€7, x €1,)(t1,t2) — (To(p) x To(p)) (B, B2)(t1i, t2i). (4.30)

As t1 and t5 range over R, the image of (£14,27) iS Yoo X Yoo and we get the following.

Proposition 4.3. The image of (4.30) is vp, X Yo,, where vp, be the geodesic joining _”2_7\/171

N;
—ri+VD;

to IN,

As in [Bra23a], we use that (Cr, Cp,(¢)) = (Yo, Tne,) to deduce that

o0

> (6, Tvo,)q" (4.31)

n=1

is a diagonal restriction of a Hilbert modular form for SLy(Q(v/D1D3)).

Remark 4.1. 1. The space (€ x ¢7 )\R%, on the left handside of (4.30) is just one of the
connected components of the adelic space Y. The geodesic vp, is the geodesic attached
to the identity in the narrow class group %Bi. In general, the cycle Cy, should be a linear
combinations of product of geodesics vy x 7} attached to a class in the class group of the
torus E' = Q(v/D1, vD2)*, and weighted by x. However, this class group is not the product
of the narrow class groups %B

2. One could also consider the case where E is a quartic field that is not a biquadratic field. For
example if E has two real and one complex place, then the quadratic space is of signature
(3,1) and the space Y is a Bianchi modular surface attached to a quadratic field K. The
image of EL is a geodesic that should come from a quadratic extension of K. It would be
interesting to compute explicitely this extension, associated to the initial extension E/F'.

3. A similar generating series of intersection numbers on a compact shimura curve have been
considered by Rickards [Ric22]. It should also follow from the seesaw argument that it is the
diagonal restriction of a Hilbert modular form.

5. SPANS OF DIAGONAL RESTRICTIONS AND TORIC CYCLES

Let (V,Q) be a rational quadratic space of even dimension and signature (p,q) with p > ¢ > 0.
Let ¢ = 17 be the characteristic function of a lattice L C V@, such that L = LNV is even and of
level 1 (unimodular). By Poincaré duality, the pairing

(= =)y Hy(Y,C) x H(Y,C) — C (5.1)
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is non-degenerate. For a subspace V. C H?(Y,C) let V+ C H,(Y,C) denote the orthogonal
complement with respect to the pairing. If we suppose that ¢ is odd, then the Kudla-Millson lift
is in fact a lift

© =0,: Hy(Y,C) — S4(SLa(2)) (5.2)

into the space of cusp forms of weight d = p—;q; see [KM90, Theorem. 2|. On the other hand, the
Kudla-Millson lift has an adjoint

8: 54(SLa(Z)) — H(Y,C) (5.3)
defined by
CORY| oy D) =] (5.4)
It satisfies
(O(C), iper = (G By (5.5)
where the pairing on the left
(—, —)pet : Sa(SL2(Z)) x Sq(SL2(Z)) — C (5.6)

is the Peterson inner product.

Proposition 5.1. Let V be a quadratic space of dimension p + q > 4, where p > q >0 and q is
odd. Then the lift © is injective and the lift © is surjective.

Proof. We have p 4+ ¢ > 4 = max(4,3 + r) where r is the Witt index. Moreover, we assumed
that L is an even unimodular lattice. Hence, the injectivity of © is the content of Corollary
1.2 of [BF10]. Suppose that f € S4(SL2(Z)) is a nonzero cusp form that is not contained in
the image of ©. Without loss of generality we can assume that f is orthogonal to Im(©) with
respect to the Peterson inner product, otherwise we replace f by f — proj(f) where proj(f) is
the orthogonal projection of f onto Im(©) with respect to the Peterson inner product. Hence, for
every C' € H,(Y,C) we have

0=(8(C), flpet = (C,O(f))v- (5.7)

Since the pairing is non-degenerate, this implies that ©(f) = 0. By the injectivity of 0 it follows
that f = 0, and that © is surjective. Note that we have Im(©) = ker(©)* and ker(0) = Im(0)=.
O

Let S be the set of characters x: T(Q)\ T(A) — C* with the same assumptions as in the rest
of the paper. We define twe following two subspaces. First let

Hr =span{C, |x € S} C H,(Y,C) (5.8)

be the homology spanned by the cycles C), for x € S. For every cycle C,, the lift ©(C)) is the
diagonal restriction of a product of Hilbert modular forms for SLy(F'). Let

S = span {O(Cy) | x € S} C Sa(SLa(Z)) (5.9)

its span. Let Heycle C Hpg—q(Y, 0Y,C) be the homology spanned by the special cycles C,,(¢). Let
HZt . C H,(Y,C) be the span of the cycles C that satisfy (C,C,(¢)) = 0 for every C,(¢).

cycle

Corollary 5.1.1. Let V be a quadratic space of dimension p+ q > 4, where p > q > 0 and q is
odd. We have the following equality

dim (S4(SL2(Z))) — dim(S7) = dim (H, (Y, C)) — dim (span{HClycle, Hr}). (5.10)
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Proof. Since © is surjective we have an isomorphism
O: Hy(Y,C)/ker(0) — S4(SL2(Z)). (5.11)
Since St is the image of Hy, the isomorphism restricts to an isomorphism
©: Hr/ker(©) N Hr — Sr. (5.12)
We deduce from (5.11) that
dim (S4(SL2(Z))) = dim (H, (Y, C)) — dim(ker(©)) (5.13)
and from (5.12) that
dim (S7) = dim (Hr) — dim(ker(©) N Hy)

= dim (span {ker(©), Hr}) — dim(ker(©)). (5.14)

The result follows by taking the difference of (5.14) and (5.13) and using that ker(©) = Im(©)+ =

H jg,cle. The last equality is due to Kudla and Millson [KM88, Theorem. 4.2]. We recall the proof.

First, if C € ng,cle, then C € ker(©) since the Fourier coefficients of ©(C) are (C, C,(p)) = 0.

Hence, we have chg,de C ker(©). On the other hand, consider the n-th Poincaré series of weight d
defined

62i7rn'y7‘
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The series converges when p + ¢ > 4 and is a cusp form. The constant c is chosen such that
(fs Pa)pet = an(f) is the n-th Fourier coefficients of f. Now suppose that C is in Im(©)*. In
particular, for every n > 0 we have

0=(C,0(P,)) = (B(C), P,)pet = (C,Crn(p)). (5.16)

Hence, we have Im(0)+ C H, Clyclc and the equality ker(©) = Im(0)* = H, Clyclc follows from ker(®) =

Im(©)*. O
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