An upper bound on the denominator of Eisenstein classes in Bianchi manifolds

Romain Branchereau

Abstract

A general conjecture of Harder relates the denominator of the Eisenstein cohomology of certain locally symmetric spaces to special values of L-functions. In this paper we consider the locally symmetric space $Y_{\Gamma}=\mathrm{SL}_{2}(\mathscr{O}) \backslash \mathbb{H}_{3}$ associated to $\mathrm{SL}_{2}(K)$ where K is an imaginary quadratic field. Berger proves a lower bound on the denominator of the Eisenstein cohomology in certain cases. In this paper, we show how results of Ito and Sczech can be used to prove an upper bound on the denominator in terms of a special value of L-function. When the class number of K is one, we combine this result with Berger's result to obtain the exact denominator.

Contents

1 Introduction

4 Denominators of the Eisenstein cohomology

1 Introduction

Let $K=\mathbb{Q}(\sqrt{D})$ be an imaginary quadratic field with ring of integers \mathscr{O}. If the class number of K is larger than one, we suppose ${ }^{1}$ that $D \equiv 1 \bmod 8$. Let $Y_{\Gamma}=\Gamma \backslash \mathbb{H}_{3}$ where $\Gamma=\operatorname{SL}_{2}(\mathscr{O})$ and \mathbb{H}_{3} is the hyperbolic 3 -space. It is a non-compact space and let X_{Γ} be its Borel-Serre compactification with boundary ∂X_{Γ}. The boundary has $h=|\mathrm{Cl}(K)|$ connected components, one at every cusp of Y_{Γ}, where h is the class number of K.

The cohomology of Y_{Γ} (or more general arithmetic groups) can be studied through their cuspidal and Eisenstein part; see [Har87; Sch94]. The inclusion $Y_{\Gamma} \hookrightarrow X_{\Gamma}$ is a homotopy equivalence, hence $H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)$ is isomorphic to $H^{1}\left(X_{\Gamma} ; \mathbb{C}\right)$. By restriction to the boundary we get a map

$$
\begin{equation*}
\text { res: } H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right) \longrightarrow H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right), \tag{1.1}
\end{equation*}
$$

[^0]whose kernel is the cuspidal (or interior) cohomology that we denote by $H_{!}^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)$. It can be identified with the image of the compactly supported cohomology $H_{c}^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)$ inside $H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)$. The Eisenstein cohomology $H_{\text {Eis }}^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)$ is the image of $H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right)$ by Harder's Eisenstein map
\[

$$
\begin{equation*}
\text { Eis: } H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right) \longrightarrow H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right) \tag{1.2}
\end{equation*}
$$

\]

It is a complement to the cuspidal cohomology, so that we have a splitting

$$
\begin{equation*}
H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)=H_{!}^{1}\left(Y_{\Gamma} ; \mathbb{C}\right) \oplus H_{\text {Eis }}^{1}\left(Y_{\Gamma} ; \mathbb{C}\right) \tag{1.3}
\end{equation*}
$$

Let $H=K(j(\mathscr{O}))$ be the Hilbert class field of K. Let χ be an unramified Hecke character of infinity type $(-2,0)$ i.e. that satisfies $\chi((\alpha))=\alpha^{-2}$ on principal ideals. Let F / H be a Galois extension of H all the values of χ and the h-th roots of unity. By the work of Harder [Har87], we know that the Eisenstein map is rational, in the sense that it preserves the natural F-structures

$$
\begin{equation*}
\text { Eis: } H^{1}\left(\partial X_{\Gamma} ; F\right) \longrightarrow H^{1}\left(Y_{\Gamma} ; F\right) \tag{1.4}
\end{equation*}
$$

It is natural to ask how the integral structures behave. Let $\widetilde{H}_{1}\left(Y_{\Gamma} ; \mathscr{Q}_{F}\right)$ be the free part of the homology with coefficients in the ring of integers \mathscr{O}_{F} of F, and let $\widetilde{H}^{1}\left(Y_{\Gamma} ; \mathscr{O}_{F}\right)$ be its dual with respect to the natural pairing between homology and cohomology. It is the cohomology of differential 1-forms whose integral along any integral homology class is in \mathscr{O}_{F}. It is known that in general the Eisenstein map is not integral, in the sense that the image of

$$
\begin{equation*}
\text { Eis: } \widetilde{H}^{1}\left(\partial X_{\Gamma} ; \mathscr{O}_{F}\right) \longrightarrow H^{1}\left(Y_{\Gamma} ; F\right) \tag{1.5}
\end{equation*}
$$

is not contained in $\widetilde{H}^{1}\left(Y_{\Gamma} ; \mathscr{O}_{F}\right)$. Hence we have have two integral structures on $H_{\text {Eis }}^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)$. The first one is given by the integral Eisenstein classes

$$
\begin{equation*}
\mathcal{L}_{0}:=\widetilde{H}^{1}\left(X_{\Gamma} ; \mathscr{O}_{F}\right) \cap H_{\text {Eis }}^{1}\left(X_{\Gamma} ; \mathbb{C}\right) \subset H_{\text {Eis }}^{1}\left(X_{\Gamma} ; \mathbb{C}\right) . \tag{1.6}
\end{equation*}
$$

The second one is coming from the integral structure on the boundary. We denote by

$$
\begin{equation*}
\mathcal{L}_{\text {Eis }}:=\operatorname{Eis}\left(\widetilde{H}^{1}\left(\partial X_{\Gamma} ; \mathscr{O}_{F}\right)\right) \tag{1.7}
\end{equation*}
$$

the image of the integral cohomology by Eis. We call the denominator of the Eisenstein cohomology the \mathscr{O}_{F}-ideal

$$
\begin{equation*}
\operatorname{Den}\left(\mathcal{L}_{\text {Eis }}\right):=\left\{\lambda \in \mathscr{O}_{F} \mid \lambda \mathcal{L}_{\text {Eis }} \subset \mathcal{L}_{0}\right\}, \tag{1.8}
\end{equation*}
$$

that relates these two natural integral structures. It was previously studied for Hilbert modular varieties in [Mae93], for the degree 2 cohomology on Bianchi manifolds in [Fel05] and in the special case $K=\mathbb{Q}(i)$ in [Kön91]. See also [Har18] for the latter case. Finally, in the case of Bianchi manifolds, Berger [Ber08] proves a lower bound on the denominator ideal in terms of an L-function. The main result of this paper is to give an upper bound.

By composing the Hecke character χ with the norm from H to K we get a Hecke character $\chi \circ \mathrm{N}_{H / K}$ of the same type on the Hilbert class field. Let $L\left(\chi \circ \mathrm{~N}_{H / K}, 0\right)$ be the associated Hecke L-function at $s=0$. Let $L^{\text {int }}\left(\chi \circ \mathrm{N}_{H / K}, 0\right)$ be the normalization by a suitable and canonical complex period to make it an algebraic integer.

Theorem. (Theorem 4.3) We have the upper bound (in the sense of divisibility) on the denominator

$$
\begin{equation*}
\frac{1}{2 \sqrt{D}} L^{\text {int }}\left(\chi \circ \mathrm{N}_{H / K}, 0\right) \mathscr{O}_{F} \subset \operatorname{Den}\left(\mathcal{L}_{\text {Eis }}\right) \tag{1.9}
\end{equation*}
$$

The theorem tells us that given a class $\operatorname{Eis}(\omega)$ in $\mathcal{L}_{\text {Eis }}$, we need to multiply it at most by the value $2^{-1} D^{-\frac{1}{2}} L^{\text {int }}\left(\chi \circ \mathrm{N}_{H / K}, 0\right)$ to make it integral.

We can then combine this result with Berger's result to obtain an equality in certain cases. Suppose that $K=\mathbb{Q}(\sqrt{D})$ has class number one and no non-trivial units. Then the Hilbert class group is $H=K$. Furthermore, since the image of χ will lie in K, we can take $F=K$ as well. Let \mathfrak{q} be a prime ideal of \mathscr{O}. Let $K_{\mathfrak{q}}$ be the completion at \mathfrak{q} with ring of integers $\mathscr{O}_{\mathfrak{q}}$. We fix a complex embedding of $K_{\mathfrak{q}}$ and consider cohomology with coefficients in $\mathscr{O}_{\mathfrak{q}}$. We define the lattice

$$
\begin{equation*}
\mathcal{L}_{\mathrm{Eis}, \mathfrak{q}}:=\operatorname{Eis}\left(\widetilde{H}^{1}\left(\partial X_{\Gamma} ; \mathscr{O}_{\mathfrak{q}}\right)\right) \tag{1.10}
\end{equation*}
$$

and the denominator at \mathfrak{q}

$$
\begin{equation*}
\operatorname{Den}\left(\mathcal{L}_{\text {Eis }, \mathfrak{q}}\right):=\left\{\lambda \in \mathscr{O}_{\mathfrak{q}} \mid \lambda \mathcal{L}_{\text {Eis }, \mathfrak{q}} \subset \widetilde{H}_{\text {Eis }}^{1}\left(X_{\Gamma} ; \mathscr{O}_{\mathfrak{q}}\right)\right\} . \tag{1.11}
\end{equation*}
$$

When K has class number one, the algebraic L-function is $L^{\text {alg }}(\chi, 0)=\frac{1}{2} G_{2}\left(L_{\theta}\right)$ where

$$
\begin{equation*}
G_{2}(L):=\left.\sum_{\omega \in L}^{\prime} \frac{1}{\omega^{2}|\omega|^{\lambda}}\right|_{\lambda=0} \tag{1.12}
\end{equation*}
$$

and $L_{\mathscr{O}}=\Omega^{-2} \mathscr{O}$ is a suitable normalization of the lattice $\mathscr{O} \subset K$. The values of $G_{2}\left(L_{\mathscr{O}}\right)$ are well known and are integral away from 2, see Table 1. After comparing our setting to Berger's setting and combining both results we obtain the following.

Corollary. (Corollary 4.6) Let \mathfrak{q} be a prime ideal coprime to $2 D$ and suppose that K has class number one and no non-trivial units. Then the denominator at \mathfrak{q} of the Eisenstein cohomology is exactly

$$
\operatorname{Den}\left(\mathcal{L}_{\mathrm{Eis}, \mathfrak{q}}\right)=G_{2}\left(L_{\mathscr{O}}\right) \mathscr{O}_{\mathrm{q}} .
$$

Remark 1.1. Berger's result gives a lower bound on the denominator of the Eisenstein cohomology $\mathcal{L}_{\text {Eis }}\left(S_{K_{f}}\right)$ of the adelic space $S_{K_{f}}$ associated to $\mathrm{SL}_{2}(K)$. The space $S_{K_{f}}$ has several connected components, and one of them is Y_{Γ}. Hence, since $Y_{\Gamma} \subset S_{K_{f}}$ we have $\operatorname{Den}\left(\mathcal{L}_{\text {Eis }}\left(S_{K_{f}}\right)\right) \subset \operatorname{Den}\left(\mathcal{L}_{\text {Eis }}\right)$. Thus, in general we cannot combine Berger's lower bound on $\operatorname{Den}\left(\mathcal{L}_{\text {Eis }}\left(S_{K_{f}}\right)\right.$) with our upper bound on $\operatorname{Den}\left(\mathcal{L}_{\text {Eis }}\right)$. However, when the class number is one we have $S_{K_{f}}=Y_{\Gamma}$, yielding the equality of the corollary. In the case where the class number of K is greater than one, one would need to give a lower bound on the denominator of the Eisenstein cohomology of the other connected components of $S_{K_{f}}$; see Remark 4.2.

D	-7	-8	-11	-19	-43	-67	-167
$G_{2}\left(L_{\mathscr{O}}\right)$	$\frac{1}{2}$	$\frac{1}{2}$	2	2	12	$2 \cdot 19$	$2^{2} \cdot 181$

Table 1: The values of $G_{2}\left(L_{\overparen{O}}\right)$ for the seven imaginary quadratic fields of class number one and having no non-trivial units.

A few words on the proof of the theorem. Let χ be an unramified Hecke character of type $(-2,0)$. For every ideal class \mathfrak{a} corresponding to a cusp of Y_{Γ}, we have a form $\omega_{\chi, \mathfrak{a}}$ on the corresponding boundary component. They are integral forms spanning the cohomology of the boundary $H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right)$. Their image by the Eisenstein map are forms $E_{\chi, \mathfrak{a}}$ that span the h dimensional Eisenstein cohomology $H_{\text {Eis }}^{1}\left(X_{\Gamma} ; \mathbb{C}\right)$. These forms are not integral, they define classes in $H_{\text {Eis }}^{1}\left(X_{\Gamma} ; F\right)$ but not in $\widetilde{H}_{\text {Eis }}^{1}\left(X_{\Gamma} ; \mathscr{O}_{F}\right)$.

On the other hand, we have another basis $\widehat{E}_{\chi, \mathfrak{a}}$ of the Eisenstein cohomology. These forms appear in the work of Ito [Ito87]. A more general construction of these Eisenstein classes was done by Bergeron-Charollois-Garcia in [BCG20; BCG23] using the Mathai-Quillen formalism.

For a fractional ideal \mathfrak{a} of K we define the Sczech cocycle $\Phi_{\mathfrak{a}}: \Gamma \longrightarrow \mathbb{C}$ by

$$
\Phi_{\mathfrak{a}}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right):= \begin{cases}I\left(\frac{a+d}{c}\right) G_{2}(\mathfrak{a})-D(a, c, \mathfrak{a}) & \text { if } \\
c \neq 0, \\
I\left(\frac{b}{d}\right) G_{2}(\mathfrak{a}) & \text { if } \\
c=0,\end{cases}
$$

where $G_{2}(\mathfrak{a})$ is an Eisenstein series and $D(a, c, \mathfrak{a})$ a Dedekind sum; see Section 2 for the definitions. The form $\widehat{E}_{\chi, \mathfrak{a}}$ is related to the Sczech cocycle as follows

$$
\Phi_{\mathfrak{a}}(\gamma)=\chi(\mathfrak{a}) \int_{u_{0}}^{\gamma u_{0}} \widehat{E}_{\chi, \mathfrak{a}},
$$

where u_{0} is any point on \mathbb{H}_{3} and $\gamma \in \Gamma$. This formula is proved by using the idea of [BCG23] to move the path of integration $\left[u_{0}, \gamma u_{0}\right]$ to infinity. More precisely, choose a cusp r of Y_{Γ} and let $\left[r, \gamma^{-1} r\right]$ be the modular symbol joining the two cusps r and $\gamma^{-1} r$. There is a homotopy between $\left[u_{0}, \gamma u_{0}\right]$ and $\left[r, \gamma^{-1} r\right]$; see Figure 4. The integral along the modular symbol $\left[r, \gamma^{-1} r\right]$ gives the Dedekind sum, whereas the term $I\left(\frac{a+d}{c}\right) G_{2}(\mathfrak{a})$ is a contribution from the cusps. Note that this formula already appears in the work of Ito [Ito87, Theorem. 3]. A similar relation between Harder's Eisenstein cohomology for adelic spaces and Sczech's cocycle appears in work of Weselmann, see in particular [Wes88, Bemerkung. 2 on p. 116].

After a suitable normalization, the Sczech cocycle takes values in \mathscr{O}_{H}. Hence, contrary to the forms $E_{\chi, \mathfrak{a}}$, the forms $\widehat{E}_{\chi, \mathfrak{a}}$ are integral and define classes in $\widetilde{H}^{1}\left(X_{\Gamma} ; \mathscr{O}_{F}\right)$. The two bases $E_{\chi, \mathfrak{a}}$ and $\widehat{E}_{\chi, \mathfrak{a}}$ of the Eisenstein cohomology $H^{1}\left(X_{\Gamma} ; \mathbb{C}\right)$ are related by a matrix M_{χ} in $\operatorname{Mat}_{h}(F)$ whose determinant is $L\left(\chi \circ \mathrm{~N}_{H / K}, 0\right)$. This explains the appearance of the L-function in the denominator.

Acknowledgements

This project is a generalization of some results of my thesis. I thank my advisors Nicolas Bergeron and Luis Garcia for suggesting me this topic and for their support. I was funded from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement №754362 during the first stages of this project, then by the University of Manitoba. I thank Pierre Charollois and Sheng-Chi Shih for helpful comments that gretaly improved the exposition.

2 Eisenstein series, L-Functions And Sczech's cocycle

Let $K=\mathbb{Q}(\sqrt{D})$ be a quadratic imaginary field with no non-trivial units. Suppose that K has class number one or that $D \equiv 1(\bmod 8)$. Let \mathscr{O} be its ring of integers, that we view as a lattice in \mathbb{C} after fixing some embedding of K in \mathbb{C}.

2.1 Canonical periods

When the class number of K is larger than one. We follow [Scz86, Section. 5, p. 103]. Let $\tau=\frac{1+\sqrt{D}}{2}$ so that $\mathscr{O}=\mathbb{Z}+\tau \mathbb{Z}$. Let

$$
\begin{equation*}
\eta(\tau)=e^{\frac{\pi i \tau}{12}} \prod_{n=1}^{\infty}\left(1-e^{2 n i \pi \tau}\right) \tag{2.1}
\end{equation*}
$$

be the Dedekind eta function and define

$$
\begin{equation*}
u:=-\frac{2^{12} \eta(2 \tau)^{24}}{\eta(\tau)^{24}} \tag{2.2}
\end{equation*}
$$

It is a unit in the Hilbert class field H. Define the elliptic curve

$$
\begin{equation*}
E: y^{2}=4 x^{3}-a x-b \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
a:=12 D(u-16), \quad b:=(2 \sqrt{D})^{3} \sqrt{u(j-1728)} \tag{2.4}
\end{equation*}
$$

j is the j-invariant $j(\tau)$ and the square root is chosen such that b is a positive real number. Then a and b are in \mathscr{O}_{H}, the period lattice is $L_{\mathscr{O}}=\Omega \mathscr{O}$ where

$$
\begin{equation*}
\Omega:=\frac{\pi}{(144|D|)^{\frac{1}{4}}} \frac{\eta(\tau)^{4}}{\eta(2 \tau)^{2}}, \tag{2.5}
\end{equation*}
$$

and the discriminant of the elliptic curve is

$$
\begin{equation*}
\Delta\left(L_{\mathscr{O}}\right)=12^{6} D^{3} u \tag{2.6}
\end{equation*}
$$

The Weierstrass equation is related to the period lattice $L_{\mathscr{O}}$ by $a=g_{2}\left(L_{\mathscr{O}}\right)$ and $b=g_{3}\left(L_{\mathscr{O}}\right)$, where for any lattice $L \subset \mathbb{C}$ we define

$$
\begin{equation*}
g_{2}(L):=60 \sum_{\omega \in L}^{\prime} \frac{1}{\omega^{4}}, \quad g_{3}(L):=140 \sum_{\omega \in L}^{\prime} \frac{1}{\omega^{6}} \tag{2.7}
\end{equation*}
$$

For any fractional ideal \mathfrak{a} of K let $\sigma=\sigma_{\mathfrak{a}}=(\mathfrak{a}, H / K)$ be the Artin symbol. Let $E_{\mathfrak{a}}=E^{\sigma_{\mathfrak{a}}}$ be the elliptic curve given by the Weierstrass equation

$$
\begin{equation*}
E_{\mathfrak{a}}: y^{2}=4 x^{3}-a^{\sigma} x-b^{\sigma} \tag{2.8}
\end{equation*}
$$

which is also defined over \mathscr{O}_{H}. Since $j(\mathscr{O})^{\sigma_{\mathfrak{a}}}=j\left(\mathfrak{a}^{-1}\right)$ we have that $E_{\mathfrak{a}} \simeq \mathbb{C} / L_{\mathfrak{a}}$ where $L_{\mathfrak{a}}=\Omega(\mathfrak{a}) \mathfrak{a}^{-1}$ for some complex period $\Omega(\mathfrak{a}) \in \mathbb{C}^{\times}$that we fix. Hence $g_{k}\left(L_{\mathfrak{a}}\right)=g_{k}(L)^{\sigma}$ is is in \mathscr{O}_{H} for $k=2,3$. Let $\lambda(\mathfrak{a})$ be the complex number

$$
\begin{equation*}
\lambda(\mathfrak{a}):=\frac{\Omega(\mathfrak{a})}{\Omega} \tag{2.9}
\end{equation*}
$$

so that $L_{\mathfrak{a}}=\lambda(\mathfrak{a}) \mathfrak{a}^{-1} L_{\mathscr{O}}$. It has the following properties [Rob78, Appendix. $\mathrm{D}(\mathrm{e})$ and $\mathrm{D}(\mathrm{f})$ on p. 371]

1. $\lambda(\mathfrak{a}) \in H^{\times}$,
2. $\lambda(\alpha \mathfrak{a})=\alpha \lambda(\mathfrak{a})$,
3. $\lambda(\mathfrak{a c})=\lambda(\mathfrak{c}) \lambda(\mathfrak{a})^{\sigma_{\mathfrak{c}}}$.

When the class number of K is one. Suppose that $K=\mathbb{Q}(\sqrt{D})$ has class number one and has non-trivial units. This is the case for the seven values of D listed in the table below and extracted from [Rob78, Tableau. B.1]. None of these values of D is congruent to 1 modulo 8 , so we cannot use the above construction of Ω. For each value of D consider the elliptic curve

$$
\begin{equation*}
E: y^{2}=4 x^{3}-a x-b \tag{2.10}
\end{equation*}
$$

where a and b are liste below in Table (2). Comparing the invariant $j(E)=1728 \frac{a^{3}}{a^{3}-27 b^{2}}$ with a list ${ }^{2}$ of j-invariants $j(\mathscr{O})$ we find that they agree. Hence, the elliptic curve E has complex multiplication by \mathscr{O} and $E(\mathbb{C}) \simeq \mathbb{C} / L_{\mathscr{O}}$ where $L_{\mathscr{O}}=\Omega \mathscr{O}$ for some complex period $\Omega \in \mathbb{C}^{\times}$that we fix.

D	-7	-8	-11	-19	-43	-67	-167
a	$5 \cdot 7$	$2 \cdot 3 \cdot 5$	$2^{3} \cdot 3 \cdot 11$	$2^{3} \cdot 19$	$2^{4} \cdot 5 \cdot 43$	$2^{3} \cdot 5 \cdot 11 \cdot 67$	$2^{4} \cdot 5 \cdot 23 \cdot 29 \cdot 163$
b	7^{2}	$2^{2} \cdot 7$	$7 \cdot 11^{2}$	19^{2}	$3 \cdot 7 \cdot 43^{2}$	$7 \cdot 31 \cdot 67^{2}$	$7 \cdot 11 \cdot 19 \cdot 127 \cdot 163^{2}$

Table 2: The coefficients a and b for the seven imaginary quadratic fields of class number one and having no non-trivial units.

[^1]
2.2 Kronecker-Eisenstein series

Let $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ be any lattice in \mathbb{C} where ω_{1} and ω_{2} are complex numbers such that ω_{1} / ω_{2} has positive imaginary part. We define

$$
\begin{equation*}
\mathcal{D}(L):=I\left(\omega_{1} \bar{\omega}_{2}\right)=2 i\left|\omega_{2}\right|^{2} \operatorname{Im}\left(\frac{\omega_{1}}{\omega_{2}}\right) . \tag{2.11}
\end{equation*}
$$

where $I(z):=z-\bar{z}$. The order of L is the order

$$
\begin{equation*}
\mathscr{O}(L):=\{\lambda \in \mathbb{C} \mid \lambda L=L\} \tag{2.12}
\end{equation*}
$$

of \mathscr{O}, and the lattice L is homothetic to an ideal in $\mathscr{O}(L)$. In particular, if $L=\mathfrak{a}$ is a fractional ideal then $\mathscr{O}(\mathfrak{a})=\mathscr{O}$. Consider the character

$$
\begin{equation*}
\theta(z):=\exp \left(2 i \pi \frac{I(z)}{\mathcal{D}(L)}\right) \tag{2.13}
\end{equation*}
$$

For a non-negative integer k and a complex number s we define the Kronecker-Eisenstein series

$$
\begin{equation*}
G(s, k, p, q, L):=\sum_{\omega \in L}^{\prime} \theta(w \bar{p}) \frac{\overline{q+\omega}^{k}}{|q+\omega|^{2 s+k}} \tag{2.14}
\end{equation*}
$$

which converges for $\operatorname{Re}(s)>1$ and the ${ }^{\prime}$ means that we remove $\omega=-q$ from the summation if q is in L. This is the series considered by Weil in [Wei76, section VIII]. The function admits a meromorphic continuation to the whole plane with only possible poles at $s=0$ (if $k=0$ and q is in L) and at $s=\frac{1}{2}$ (if $k=0$ and p is in L); see [Wei76, section VIII, p. 80]. Moreover, it satisfies the functional equation

$$
\begin{equation*}
\mathcal{E}(s, k, p, q, L)=\theta(p \bar{q}) \mathcal{E}(1-s, k, p, q, L) \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{E}(s, k, p, q, L):=\left(\frac{2 i \pi}{\mathcal{D}(L)}\right)^{-s} \Gamma\left(s+\frac{k}{2}\right) G(s, k, p, q, L) \tag{2.16}
\end{equation*}
$$

For a positive integer k we set

$$
\begin{equation*}
G_{k}(z, L):=G\left(\frac{k}{2}, k, 0, z, L\right)=\left.\sum_{\omega \in L}^{\prime} \frac{1}{(z+\omega)^{k}|z+k|^{\lambda}}\right|_{\lambda=0} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
G(z, L):=\frac{2 i \pi}{\mathcal{D}(L)} G(0,2,0, z, L) \tag{2.18}
\end{equation*}
$$

They satisfy the following homogeneity properties

$$
\begin{align*}
G_{k}(\alpha z, \alpha L) & =\alpha^{-k} G_{k}(z, L) \\
G(\alpha z, \alpha L) & =\frac{\bar{\alpha}}{\alpha} G(z, L) . \tag{2.19}
\end{align*}
$$

When $z=0$ we set

$$
\begin{align*}
G(L) & :=G(0, L) \\
G_{k}(L) & :=G_{k}(0, L) \tag{2.20}
\end{align*}
$$

Let $L_{\mathfrak{a}}$ be the lattices of Section 2.1. The following result is well known and was first proved by Damerell [Dam71]. See also [Rob78, Appendix D(c)].

PROPOSITION 2.1. The value $2 \sqrt{D} G_{2}\left(L_{\mathfrak{a}}\right)$ is an algebraic integer in \mathscr{O}_{H}.

2.3 Sczech cocycle

Let $L \subset \mathbb{C}$ be a lattice such that $\mathscr{O}(L)=\mathscr{O}$. For a and c in \mathscr{O}, and c nonzero, we define the Dedekind sum

$$
\begin{equation*}
D(a, c, L):=\frac{1}{c} \sum_{r \in L / c L} G_{1}\left(\frac{a r}{c}, L\right) G_{1}\left(\frac{r}{c}, L\right) \tag{2.21}
\end{equation*}
$$

In [Scz84], Sczech shows that the map $\Phi_{L}: \Gamma \longrightarrow \mathbb{C}$ defined by

$$
\Phi_{L}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)= \begin{cases}I\left(\frac{a+d}{c}\right) G_{2}(L)-D(a, c, L) & \text { if } \quad c \neq 0 \\
I\left(\frac{b}{d}\right) G_{2}(L) & \text { if } \quad c=0\end{cases}
$$

is a cocycle.
Remark 2.1. We will show in Theorem 3.11 that $\Phi_{\mathfrak{a}}(\gamma)=\chi(\mathfrak{a}) \int_{u_{0}}^{\gamma u_{0}} \widehat{E}_{\chi, \mathfrak{a}}$ for a certain closed form $\widehat{E}_{\chi, \mathfrak{a}}$ in $\Omega^{1}\left(Y_{\Gamma}\right)$. Since the form is closed, the integral is independent of the basepoint u_{0} and we have

$$
\begin{align*}
\Phi_{\mathfrak{a}}\left(\gamma_{1} \gamma_{2}\right) & =\int_{u_{0}}^{\gamma_{1} \gamma_{2} u_{0}} \widehat{E}_{\chi, \mathfrak{a}} \\
& =\int_{\gamma_{2} u_{0}}^{\gamma_{1} \gamma_{2} u_{0}} \widehat{E}_{\chi, \mathfrak{a}}+\int_{u_{0}}^{\gamma_{2} u_{0}} \widehat{E}_{\chi, \mathfrak{a}} \\
& =\int_{u_{0}}^{\gamma_{1} u_{0}} \widehat{E}_{\chi, \mathfrak{a}}+\int_{u_{0}}^{\gamma_{2} u_{0}} \widehat{E}_{\chi, \mathfrak{a}} \\
& =\Phi_{\mathfrak{a}}\left(\gamma_{1}\right)+\Phi_{\mathfrak{a}}\left(\gamma_{2}\right) . \tag{2.22}
\end{align*}
$$

This gives an alternative proof of the cocycle property of the Sczech cocycle $\Phi_{\mathfrak{a}}$.
Furthermore, Sczech proved that the cocycle is integral. The following is proved in [Scz84, Satz. 4].

Proposition 2.2 (Sczech). For any γ in Γ, the value $2 \Phi_{L_{\mathfrak{a}}}(\gamma)$ is an algebraic integer in \mathscr{O}_{H}.

2.4 Hecke characters and L-functions

Let χ be an unramified algebraic Hecke character of infinity type (k, j). Let F_{χ} be the finite extension of H obtained by adjoining the image of χ. So χ is a character

$$
\begin{equation*}
\chi: \mathcal{I}_{K} \longrightarrow F_{\chi}^{\times} \subset \mathbb{C}^{\times} \tag{2.23}
\end{equation*}
$$

on the group \mathcal{I}_{K} of fractional ideals of K such that on principal ideals (α) in K we have

$$
\begin{equation*}
\chi((\alpha))=\alpha^{k} \bar{\alpha}^{j} . \tag{2.24}
\end{equation*}
$$

Let F be a Galois extension of H containing F_{χ} and the h-th roots of unity. If χ and $\widetilde{\chi}$ are two Hecke characters of the same type, then there is a character $\varphi \in \widehat{\mathrm{Cl}(K)}$ on the class group such that $\tilde{\chi}=\varphi \chi$. Thus F is a field containing all the fields F_{χ} as χ varies over all the Hecke characters as above.

Proposition 2.3. For any fractional ideal \mathfrak{a} and any Hecke character χ of infinity type ($-2,0$), the value $\chi(\mathfrak{a}) \lambda(\mathfrak{a})^{2}$ is a unit in \mathscr{O}_{F}.

Proof. For $\sigma \in \operatorname{Gal}(H / K)$ we have $\Delta\left(L_{\overparen{O}}\right)^{\sigma}=12^{6} D^{3} u^{\sigma}$ where $u^{\sigma} \in \mathscr{O}_{H}^{\times}$is a unit. Hence

$$
\begin{equation*}
c(\sigma):=\frac{\Delta\left(L_{\overparen{O}}\right)}{\Delta\left(L_{\mathscr{O}}\right)^{\sigma}}=\frac{u}{u^{\sigma}} \tag{2.25}
\end{equation*}
$$

is a unit. When $\sigma=\sigma_{\mathfrak{a}}$ then $c\left(\sigma_{\mathfrak{a}}\right)=\Delta\left(L_{\mathscr{O}}\right) / \Delta\left(L_{\mathfrak{a}}\right)$. Since $\Delta\left(\alpha L_{\overparen{O}}\right)=\alpha^{-12} \Delta\left(L_{\mathscr{O}}\right)$, we have

$$
\begin{equation*}
c\left(\sigma_{\mathfrak{a}}\right)=\Delta\left(L_{\mathscr{O}}\right) / \Delta\left(L_{\mathfrak{a}}\right)=\frac{\Omega^{-12} \Delta(\mathscr{O})}{\Omega(\mathfrak{a})^{-12} \Delta\left(\mathfrak{a}^{-1}\right)}=\lambda(\mathfrak{a})^{12} \frac{\Delta(\mathscr{O})}{\Delta\left(\mathfrak{a}^{-1}\right)} . \tag{2.26}
\end{equation*}
$$

Moreover, by [Sha87, p.49] or ${ }^{3}$ [Lan78, Theorem. 5 p.165] we have

$$
\begin{equation*}
\frac{\Delta\left(\mathfrak{a}^{-1}\right)}{\Delta(\mathscr{O})} \mathscr{O}_{H}=\mathfrak{a}^{12} \mathscr{O}_{H} \tag{2.27}
\end{equation*}
$$

Combining the two gives $\lambda(\mathfrak{a})^{12} \mathscr{O}_{H}=\mathfrak{a}^{12} \mathscr{O}_{H}$, and by comparing the prime factorizations we get

$$
\begin{equation*}
\lambda(\mathfrak{a}) \mathscr{O}_{H}=\mathfrak{a} \mathscr{O}_{H} . \tag{2.28}
\end{equation*}
$$

On the other hand, since $\mathfrak{a}^{h}=\alpha \mathscr{O}$ for some $\alpha \in K^{\times}$and h is the class number, we have $\chi(\mathfrak{a})^{h} \mathscr{O}_{F}=\mathfrak{a}^{-2 h} \mathscr{O}_{F}$. By comparing the prime decomposition we then also get

$$
\begin{equation*}
\chi(\mathfrak{a}) \mathscr{O}_{F}=\mathfrak{a}^{-2} \mathscr{O}_{F} . \tag{2.29}
\end{equation*}
$$

Combining (2.28) and (2.29) we obtain

$$
\begin{equation*}
\chi(\mathfrak{a}) \lambda(\mathfrak{a})^{2} \mathscr{O}_{F}=\mathscr{O}_{F} . \tag{2.30}
\end{equation*}
$$

[^2]Let χ be a Hecke character of infinity type (k, j). The Hecke L-function

$$
\begin{equation*}
L(\chi, s):=\sum_{0 \neq \mathfrak{a} \subseteq \mathscr{C}} \frac{\chi(\mathfrak{a})}{\mathrm{N}(\mathfrak{a})^{s}} \tag{2.31}
\end{equation*}
$$

converges for $\operatorname{Re}(s)>1+\frac{k+j}{2}$, admits a meromorphic continuation to the whole plane and a functional equation.

Let $\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{h}\right\}$ be integral ideal representatives of the class group of K. Every integral ideal \mathfrak{a} can be written $\mathfrak{a}=(\alpha) \mathfrak{a}_{i}$ for some $i \in\{1, \ldots, h\}$, where $(\alpha) \subset \mathfrak{a}_{i}^{-1}$. Hence we can write the L-function as

$$
\begin{align*}
L(\chi, s) & =\sum_{i=1}^{h} \frac{\chi\left(\mathfrak{a}_{i}\right)}{\mathrm{N}\left(\mathfrak{a}_{i}\right)^{s}} \frac{1}{w\left(\mathfrak{a}_{i}^{-1}\right)} \sum_{\alpha \in \mathfrak{a}_{i}^{-1}-\{0\}} \frac{\chi((\alpha))}{(\alpha \bar{\alpha})^{s}} \\
& =\sum_{i=1}^{h} \frac{\chi\left(\mathfrak{a}_{i}\right)}{\mathrm{N}\left(\mathfrak{a}_{i}\right)^{s}} \frac{1}{w\left(\mathfrak{a}_{i}^{-1}\right)} \sum_{\alpha \in \mathfrak{a}_{i}^{-1}-\{0\}} \frac{\alpha^{k} \bar{\alpha}^{j}}{|\alpha|^{2 s}}, \\
& =\sum_{i=1}^{h} \frac{\chi\left(\mathfrak{a}_{i}\right)}{\mathrm{N}\left(\mathfrak{a}_{i}\right)^{s}} \frac{1}{w\left(\mathfrak{a}_{i}^{-1}\right)} G\left(s-\frac{k+j}{2}, j-k, 0,0 ; \mathfrak{a}_{i}^{-1}\right) \tag{2.32}
\end{align*}
$$

where $w\left(\mathfrak{a}_{i}\right)=2^{\left|\mathscr{O}^{\times} \cap \mathfrak{a}_{i}\right|} \in\{1,2\}$ depends on the number of units in \mathfrak{a}_{i}.
From now on, let χ be of infinity type $(-2,0)$. At $s=0$ we then have

$$
\begin{equation*}
L(\chi, 0)=\sum_{i=1}^{h} \frac{\chi\left(\mathfrak{a}_{i}\right)}{w\left(\mathfrak{a}_{i}\right)} G_{2}\left(\mathfrak{a}_{i}^{-1}\right) . \tag{2.33}
\end{equation*}
$$

Note that (2.33) does not depend on the choice of representatives. We define the algebraic L function

$$
\begin{equation*}
L^{\mathrm{alg}}(\chi, s):=\Omega^{-2} L(\chi, s), \tag{2.34}
\end{equation*}
$$

where Ω is our the canonical period (2.5). We also define the integral L-function

$$
\begin{equation*}
L^{\mathrm{int}}(\chi, s):=4 \sqrt{D} L^{\mathrm{alg}}(\chi, s) . \tag{2.35}
\end{equation*}
$$

The normalizations are chosen such that we have the following result.

Proposition 2.4. The value $L^{\text {alg }}(\chi, 0)$ is an algebraic number in F and nonzero. More precisely, the value $L^{\text {int }}(\chi, 0)$ is in \mathscr{O}_{F}.

Proof. The integrality statement is due Damerell and follows from Proposition 2.1. By the homogeneity of G_{2} we have $G_{2}\left(\mathfrak{a}_{i}^{-1}\right)=\Omega\left(\mathfrak{a}_{i}\right)^{2} G_{2}\left(L_{\mathfrak{a}_{i}}\right)$ and hence

$$
\begin{equation*}
4 \sqrt{D} \Omega^{-2} L(\chi, 0)=\sum_{i=1}^{h} \chi\left(\mathfrak{a}_{i}\right) \lambda\left(\mathfrak{a}_{i}\right)^{2} \frac{2}{w\left(\mathfrak{a}_{i}^{-1}\right)} 2 \sqrt{D} G_{2}\left(L_{\mathfrak{a}_{i}}\right) . \tag{2.36}
\end{equation*}
$$

and all the terms are algebraic. Furthermore, by Proposition 2.3 we have that $\chi\left(\mathfrak{a}_{i}\right) \lambda\left(\mathfrak{a}_{i}\right)^{2}$ is a unit in \mathscr{O}_{F}. The integrality of $L^{\text {int }}(\chi, 0)$ follows since $2 \sqrt{D} G_{2}\left(L_{\mathfrak{a}_{i}}\right)$ is in \mathscr{O}_{H} by Proposition 2.1, and $w\left(\mathfrak{a}_{i}^{-1}\right)=1$ or 2 .

The character χ has infinity type $(-2,0)$. Hence the Hecke character $\chi(\mathfrak{a}) N(\mathfrak{a})^{2}$ has type $(0,2)$, and $\mathcal{C}(\mathfrak{a}):=\overline{\chi(\mathfrak{a}) \mathrm{N}(\mathfrak{a})^{2}}$ has type $(2,0)$. Then we have

$$
\begin{equation*}
L(\chi, 0)=L\left(\chi(\mathfrak{a}) \mathrm{N}(\mathfrak{a})^{2}, 2\right)=\frac{2 \pi}{\sqrt{|D|}} L(\mathcal{C}, 1), \tag{2.37}
\end{equation*}
$$

where the second equality is the functional equation; see [Gre85]. By arguing as in [Gre85] (in the case $n=2$), we have that $L(\mathcal{C}, 1)$ is nonzero.

Composing with the norm, one gets a Hecke character on H

$$
\begin{equation*}
\chi \circ \mathrm{N}_{H / K}: \mathcal{I}_{H} \longrightarrow F^{\times} \subset \mathbb{C}^{\times} \tag{2.38}
\end{equation*}
$$

of infinity type $(-2,0)$, where for any fractional ideal \mathfrak{b} of H

$$
\begin{equation*}
\mathrm{N}_{H / K}(\mathfrak{b})=K \cap \prod_{\sigma \in \operatorname{Gal}(H / K)} \sigma(\mathfrak{b}) \tag{2.39}
\end{equation*}
$$

is the relative ideal norm. We can then also consider the L-function

$$
\begin{equation*}
L\left(\chi \circ \mathrm{~N}_{H / K}, s\right)=\sum_{0 \neq \mathfrak{b} \subseteq \mathscr{O}_{H}} \frac{\chi\left(\mathrm{~N}_{H / K}(\mathfrak{b})\right)}{\mathrm{N}(\mathfrak{b})^{s}}=\prod_{\varphi \in \overline{\mathrm{Cl}(K)}} L(\varphi \chi, s) . \tag{2.40}
\end{equation*}
$$

It follows from Proposition 2.4 that

$$
\begin{equation*}
L^{\mathrm{alg}}\left(\chi \circ \mathrm{~N}_{H / K}, 0\right):=\Omega^{-2 h} L\left(\chi \circ \mathrm{~N}_{H / K}, 0\right) \tag{2.41}
\end{equation*}
$$

is a nonzero algebraic number in F and that

$$
\begin{equation*}
L^{\mathrm{int}}\left(\chi \circ \mathrm{~N}_{H / K}, 0\right):=4^{h} D^{\frac{h}{2}} L^{\mathrm{alg}}\left(\chi \circ \mathrm{~N}_{H / K}, 0\right) \tag{2.42}
\end{equation*}
$$

is an algebraic integer in \mathscr{O}_{F}.
Remark 2.2. Proposition 2.4 on the integrality of $L^{\text {int }}(\chi, 0)$ for a character of type $(k, j)=(-2,0)$ is due to Damerell [Dam71]. Other integrality results are also know for more general characters of type (k, j) with $k<0$ and $j \geq 0$ (so called critical type). We refer to [Ber09, Theorem. 3] for a summary of p-integrality results due to Shimura, Coates-Wiles, Katz, Hida, Tilouine, de Shalit, Rubin and others. More recently, Kings and Sprang show in [KS20] that for any pair of coprime ideals in K we have

$$
\begin{equation*}
\left(1-\chi\left(\mathfrak{c}^{\prime}\right)\right)(\chi(\mathfrak{c}) \mathrm{N}(\mathfrak{c})-1) L^{\mathrm{alg}}(\chi, 0) \in \mathscr{O}_{F_{\chi}}\left[\frac{1}{d_{K} \mathrm{~N}\left(\mathfrak{c} c^{\prime}\right)}\right] \tag{2.43}
\end{equation*}
$$

where

$$
\begin{equation*}
L^{\mathrm{alg}}(\chi, 0):=\frac{(-k-1)!\Omega^{k}(2 i \pi)^{j}}{\left(\Omega^{\vee}\right)^{j}} L(\chi, 0) \tag{2.44}
\end{equation*}
$$

for a suitable choice of complex periods Ω and Ω^{\vee} and d_{K} is the discriminant of K.

3 Eisenstein cohomology

Let \mathbb{H}_{3} be the hyperbolic 3 -space

$$
\begin{equation*}
\mathbb{H}_{3}:=\left\{u=z+j v \mid z \in \mathbb{C}, v \in \mathbb{R}_{>0}\right\}, \tag{3.1}
\end{equation*}
$$

where $i j=-j i$ and $i^{2}=j^{2}=-1$. For $u=z+j v$ let $\bar{u}=\bar{z}-j v$ and $|u|=u \bar{u}=|z|^{2}+v^{2}$. The group $\mathrm{SL}_{2}(\mathbb{C})$ acts transitively on \mathbb{H}_{3} by

$$
\begin{equation*}
u \longmapsto(a u+b)(c u+d)^{-1}=\frac{(a u+b)(\overline{c u+d})}{|c z+d|^{2}+v^{2}}, \tag{3.2}
\end{equation*}
$$

and the stabilizer of j is $\mathrm{SU}(2)$. Hence the symmetric space $\mathrm{SL}_{2}(\mathbb{C}) / \mathrm{SU}(2)$ is isomorphic to \mathbb{H}_{3}. For a fractional ideal \mathfrak{b} of K let

$$
\Gamma(\mathfrak{b}):=\left\{\left.\left(\begin{array}{ll}
a & b \tag{3.3}\\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(K) \right\rvert\, a, d \in \mathscr{O}, b \in \mathfrak{b}, c \in \mathfrak{b}^{-1}\right\}
$$

be the subgroup of $\mathrm{SL}_{2}(K)$ preserving $\mathscr{O} \oplus \mathfrak{b}$ by right multiplication. Let $\Gamma:=\Gamma(\mathscr{O})=\mathrm{SL}_{2}(\mathscr{O})$ and

$$
\begin{equation*}
Y_{\Gamma}:=\Gamma \backslash \mathbb{H}_{3} . \tag{3.4}
\end{equation*}
$$

This space is a non-compact 3 -dimensional orbifold and can be compactified in several ways, one of them is the Borel-Serre compactification.

3.1 Borel-Serre compactification

We describe the Borel-Serre compactification of Y_{Γ}; see [BJ06] or [JM02] for more on compactifications of locally symmetric spaces. We define the space

$$
\begin{equation*}
\mathbb{H}_{3}^{*}:=\mathbb{H}_{3} \cup \bigsqcup_{r \in \mathbb{P}^{1}(K)} \mathcal{H}_{r} \tag{3.5}
\end{equation*}
$$

where $\mathcal{H}_{r}=\mathbb{P}^{1}(\mathbb{C})-\{r\}$. We have a canonical map

$$
\begin{align*}
\mathcal{H}_{r} & \longrightarrow \mathbb{C} \\
(x: y) & \longmapsto \frac{m x}{m y-n x} \tag{3.6}
\end{align*}
$$

where $r=(m: n)$. Hence we can view the space \mathbb{H}_{3}^{*} as adding a copy of \mathbb{C} at every point $\frac{m}{n}$ on the boundary of \mathbb{H}_{3}. The topology on \mathbb{H}_{3}^{*} is defined as follows: let \mathcal{H}_{∞} be the boundary component at ∞ corresponding to $r=(1: 0)$. A sequence $u_{k}=z_{k}+j v_{k}$ converges to $\left(z_{0}: 1\right) \in \mathcal{H}_{\infty}$ if $\lim _{k \rightarrow \infty} v_{k}=\infty$ and $\lim _{k \rightarrow \infty} z_{k}=z_{0}$. If γ maps ∞ to r then u_{k} converges to $(x: y) \in \mathcal{H}_{r}$ if $\gamma^{-1} u_{k}$ converges to $\gamma^{-1}(x: y) \in \mathcal{H}_{\infty}$. The action of Γ extends to \mathbb{H}_{3}^{*} by sending $z \in \mathcal{H}_{r}$ to $\gamma z \in \mathcal{H}_{\gamma r}$, where $\mathrm{SL}_{2}(\mathbb{C})$ acts on $\mathbb{P}^{1}(\mathbb{C})$ by

$$
\left(\begin{array}{ll}
a & b \tag{3.7}\\
c & d
\end{array}\right)(x: y)=(a x+b y: c x+d y) .
$$

We define $X_{\Gamma}:=\Gamma \backslash \mathbb{H}_{3}^{*}$. Let $C_{\Gamma}:=\Gamma \backslash \mathbb{P}^{1}(K)$ be the set of cusps of Y_{Γ}. We can represent cusps by fractional ideals in K since we have a bijection [Ber09, Theorem. 18]

$$
\begin{align*}
C_{\Gamma} & \longrightarrow \mathrm{Cl}(K) \\
c=\Gamma(m: n) & \longmapsto\left[\mathfrak{a}_{c}\right] \tag{3.8}
\end{align*}
$$

where $\mathfrak{a}_{c}:=(m)+(n)$ and $\mathrm{Cl}(K)$ is the class group. We have a bijection

$$
\begin{gather*}
\Gamma \backslash \bigsqcup_{r \in \mathbb{P}^{1}(K)} \mathcal{H}_{r} \longrightarrow \bigsqcup_{c=[r] \in C_{\Gamma}} \Gamma_{r} \backslash \mathcal{H}_{r} \\
(x: y) \longmapsto \gamma(x: y) \tag{3.9}
\end{gather*}
$$

where $(x: y) \in \mathcal{H}_{r}$, the element γ maps $(1: 0)$ to some $[r] \in C_{\Gamma}$ and Γ_{r} is the unipotent radical of the stabilizer $\{\gamma \in \Gamma \mid \gamma c=c\}$ of r in Γ. The Borel-Serre compactification is

$$
\begin{equation*}
X_{\Gamma}:=Y_{\Gamma} \cup \bigsqcup_{c=[r] \in C_{\Gamma}} \Gamma_{r} \backslash \mathcal{H}_{r}, \tag{3.10}
\end{equation*}
$$

and the boundary of the Borel-Serre compactification is

$$
\begin{equation*}
\partial X_{\Gamma}=\bigsqcup_{c=[r] \in C_{\Gamma}} \Gamma_{r} \backslash \mathcal{H}_{r} . \tag{3.11}
\end{equation*}
$$

Note that

$$
\Gamma_{\infty}=\left\{\left.\left(\begin{array}{ll}
1 & b \tag{3.12}\\
0 & 1
\end{array}\right) \right\rvert\, b \in \mathscr{O}\right\} \simeq \mathscr{O},
$$

hence

$$
\begin{align*}
\Gamma_{\infty} \backslash \mathcal{H}_{\infty} & \longrightarrow \mathbb{C} / \mathscr{O} \\
\Gamma_{\infty}(z: 1) & \longmapsto z+\mathscr{O} . \tag{3.13}
\end{align*}
$$

Let $r=(m: n)$ and $M=\left(\begin{array}{cc}y & -x \\ -n & m\end{array}\right)$ in $\mathrm{SL}_{2}(K)$ that maps r to ∞. We then have

$$
\begin{equation*}
M \Gamma_{r} M^{-1}=\left(M \Gamma M^{-1}\right)_{\infty} . \tag{3.14}
\end{equation*}
$$

We define the fractional ideal $\mathfrak{a}_{M}=(m)+(n)$, so that

$$
M \in\left(\begin{array}{cc}
\mathfrak{a}_{M}^{-1} & \mathfrak{a}_{M}^{-1} \tag{3.15}\\
\mathfrak{a}_{M} & \mathfrak{a}_{M}
\end{array}\right)
$$

and

$$
\begin{equation*}
M \Gamma M^{-1}=\Gamma\left(\mathfrak{a}_{M}^{-2}\right) ; \tag{3.16}
\end{equation*}
$$

see for example [Gee88, p. 12]. In particular

$$
M \Gamma_{r} M^{-1}=\left(M \Gamma M^{-1}\right)_{\infty}=\left\{\left.\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \right\rvert\, b \in \mathfrak{a}_{M}^{-2}\right\} .
$$

Thus we have a map

$$
\begin{equation*}
\Gamma_{r} \backslash \mathcal{H}_{r} \longrightarrow\left(M \Gamma M^{-1}\right)_{\infty} \backslash \mathcal{H}_{\infty} \simeq \mathbb{C} / \mathfrak{a}_{M}^{-2}, \tag{3.17}
\end{equation*}
$$

where the first map is $(z: 1) \mapsto M(z: 1)$ and the second is (3.13).

3.2 Equivariant homology and cohomology

Since Y_{Γ} is not a manifold but rather an orbifold, we need to work with equivariant (co)homology.

Restriction of differential forms. At ∞ the boundary component of \mathbb{H}_{3}^{*} can be embedded inside \mathbb{H}_{3} as a horocycle by the map

$$
\begin{align*}
\iota_{v}: \mathcal{H}_{\infty} \simeq \mathbb{C} & \longleftrightarrow \mathbb{H}_{3} \\
z & \longmapsto z+j v . \tag{3.18}
\end{align*}
$$

For a differential form ω in $\Omega^{k}\left(\mathbb{H}_{3}\right)$ we define the restriction map

$$
\begin{align*}
\operatorname{res}_{\infty}: \Omega^{k}\left(\mathbb{H}_{3}\right) & \longrightarrow \Omega^{k}\left(\mathcal{H}_{\infty}\right) \\
\omega & \longmapsto \operatorname{res}_{\infty}(\omega):=\lim _{v \rightarrow \infty} i_{v}^{*} \omega \tag{3.19}
\end{align*}
$$

to be the restriction of ω to the boundary component at the cusp ∞. Note that ι_{v} is \mathscr{O}-equivariant in the sense that for every $\gamma=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$ in Γ_{∞} we have

$$
\left(\begin{array}{ll}
1 & b \tag{3.20}\\
0 & 1
\end{array}\right) \iota_{v}(z)=\iota_{v}(z+b)
$$

Hence it descends to a map $\iota_{v}: \Gamma_{\infty} \backslash \mathcal{H}_{\infty} \rightarrow Y_{\Gamma}$, and so does the restriction map:

$$
\begin{equation*}
\operatorname{res}_{\infty}: \Omega^{k}\left(Y_{\Gamma}\right) \longrightarrow \Omega^{k}\left(\Gamma_{\infty} \backslash \mathcal{H}_{\infty}\right) \tag{3.21}
\end{equation*}
$$

The other boundary components \mathcal{H}_{r} can be embedded as horosphere at the other cusps. Let M be a matrix in $\mathrm{SL}_{2}(K)$ sending r to ∞. We define the embedding

$$
\begin{equation*}
\iota_{v, M}(z):=M^{-1} \circ \iota_{v} \circ M: \mathcal{H}_{r} \longrightarrow \mathbb{H}_{3} \tag{3.22}
\end{equation*}
$$

Its image is a horosphere, see figure 1 . If N is another matrix sending r to ∞, then

$$
M=\left(\begin{array}{cc}
a & b \tag{3.23}\\
0 & a^{-1}
\end{array}\right) N
$$

and $\iota_{N, r}=M^{-1} \circ \iota_{v / a^{2}} \circ M$. Hence the embedding depends on the choice of M, but taking the limits gives a well-defined map

$$
\begin{align*}
\operatorname{res}_{r}: \Omega^{k}\left(\mathbb{H}_{3}\right) & \longrightarrow \Omega^{k}\left(\mathcal{H}_{r}\right) \\
\omega & \longmapsto \operatorname{res}_{r}(\omega):=\lim _{v \rightarrow \infty} i_{M, v}^{*} \omega \tag{3.24}
\end{align*}
$$

which also descends to the quotient

$$
\begin{equation*}
\operatorname{res}_{r}: \Omega^{k}\left(Y_{\Gamma}\right) \longrightarrow \Omega^{k}\left(\Gamma_{r} \backslash \mathcal{H}_{r}\right) \tag{3.25}
\end{equation*}
$$

Finally, note that for any matrix A in $\mathrm{SL}_{2}(K)$ and any form ω on \mathbb{H}_{3} we have

$$
\begin{equation*}
A^{*} \operatorname{res}_{A r}(\omega)=\operatorname{res}_{r}\left(A^{*} \omega\right) \tag{3.26}
\end{equation*}
$$

Figure 1: The embedding of \mathcal{H}_{r} by $\iota_{r, v}$ is a horosphere in \mathbb{H}_{3}, tangent to the plane $v=0$ at the cusp r. As v increases, the radius of the sphere decreases. Hence we can see the boundary components as horospheres at infinity.

Cohomology. Following [Ste89, Section. 2] we define a k-form ω on \mathbb{H}_{3}^{*} to be a k-form ω_{0} on \mathbb{H}_{3} and a family k-forms ω_{r} on \mathcal{H}_{r} such that $\operatorname{res}_{r}\left(\omega_{0}\right)=\omega_{r}$. We denote by $\Omega^{k}\left(\mathbb{H}_{3}^{*}\right)$ the space of such forms. Let

$$
\begin{equation*}
\Omega^{k}\left(\mathbb{H}_{3}^{*} ; \mathbb{C}\right):=\Omega^{k}\left(\mathbb{H}_{3}^{*}\right) \otimes_{\mathbb{R}} \mathbb{C} \tag{3.27}
\end{equation*}
$$

be the differential forms valued in \mathbb{C}. Let $\Omega^{k}\left(\mathbb{H}_{3}^{*} ; \mathbb{C}\right)^{\Gamma}$ be the complex of Γ-invariant forms, consisting of forms that satisfy $\gamma^{*} \omega_{0}=\omega_{0}$ and $\gamma^{*} \omega_{r}=\omega_{\gamma^{-1} r}$. Let $H^{k}\left(X_{\Gamma} ; \mathbb{C}\right)=H^{k}\left(\Omega^{\bullet}\left(\mathbb{H}_{3}^{*} ; \mathbb{C}\right)^{\Gamma}\right)$ be the cohomology of this complex. Similarly we have

$$
\begin{equation*}
H^{k}\left(\partial X_{\Gamma} ; \mathbb{C}\right)=\bigoplus_{c=[r] \in C_{\Gamma}} H^{k}\left(\Omega^{\bullet}\left(\mathcal{H}_{r} ; \mathbb{C}\right)^{\Gamma_{r}}\right) \simeq H^{k}\left(\Omega^{\bullet}\left(\partial X_{\Gamma} ; \mathbb{C}\right)^{\Gamma}\right) \tag{3.28}
\end{equation*}
$$

It follows from (3.26) that the restriction map induces a map

$$
\text { res: } \begin{align*}
H^{k}\left(Y_{\Gamma} ; \mathbb{C}\right) & \longrightarrow H^{k}\left(\partial X_{\Gamma} ; \mathbb{C}\right) \\
\omega & \longmapsto\left(\operatorname{res}_{r}(\omega)\right)_{c=[r]} . \tag{3.29}
\end{align*}
$$

Relative cohomology. Let $\Omega^{k}\left(\mathbb{H}_{3}^{*}, \partial \mathbb{H}_{3}^{*} ; \mathbb{C}\right)^{\Gamma}:=\Omega^{k}\left(\mathbb{H}_{3}^{*} ; \mathbb{C}\right)^{\Gamma} \oplus \Omega^{k-1}\left(\partial \mathbb{H}_{3}^{*} ; \mathbb{C}\right)^{\Gamma}$ be the complex with the coboundary operator

$$
\begin{align*}
\delta: \Omega^{k}\left(\mathbb{H}_{3}^{*}, \partial \mathbb{H}_{3}^{*} ; \mathbb{C}\right)^{\Gamma} & \longrightarrow \Omega^{k+1}\left(\mathbb{H}_{3}^{*}, \partial \mathbb{H}_{3}^{*} ; \mathbb{C}\right)^{\Gamma} \\
(\omega, \theta) & \longmapsto\left(d \omega, \iota^{*} \omega-d \theta\right) . \tag{3.30}
\end{align*}
$$

The cohomology $H^{k}\left(X_{\Gamma}, \partial X_{\Gamma} ; \mathbb{C}\right)$ of X_{Γ} relative to ∂X_{Γ} is the cohomology associated to this complex. We have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \Omega^{k-1}\left(\partial \mathbb{H}_{3}^{*} ; \mathbb{C}\right)^{\Gamma} \stackrel{\alpha}{\longrightarrow} \Omega^{k}\left(\mathbb{H}_{3}^{*}, \partial \mathbb{H}_{3}^{*} ; \mathbb{C}\right)^{\Gamma} \xrightarrow{\beta} \Omega^{k}\left(\mathbb{H}_{3}^{*} ; \mathbb{C}\right)^{\Gamma} \longrightarrow 0 \tag{3.31}
\end{equation*}
$$

where the first map is given by $\alpha(\theta)=(0, \theta)$ and the second by $\beta(\omega, \theta)=\omega$. This induces a long exact sequence in cohomology

$$
\begin{align*}
& H^{k-1}\left(\partial X_{\Gamma} ; \mathbb{C}\right) \xrightarrow{\alpha^{*}} H^{k}\left(X_{\Gamma}, \partial X_{\Gamma} ; \mathbb{C}\right) \xrightarrow{\beta^{*}} H^{k}\left(X_{\Gamma} ; \mathbb{C}\right) \\
& H^{k}\left(\partial X_{\Gamma} ; \mathbb{C}\right) \xrightarrow{\alpha^{*}} H^{k+1}\left(X_{\Gamma}, \partial X_{\Gamma} ; \mathbb{C}\right) \xrightarrow{\beta^{*}} H^{k+1}\left(X_{\Gamma} ; \mathbb{C}\right) \tag{3.32}
\end{align*}
$$

and the boundary map res is the restriction to the boundary.

Homology. For an abelian group A let $C_{n}\left(\mathbb{H}_{3} ; A\right)$ be the \mathbb{Z}-module of singular n-chains valued in A. The action of Γ on \mathbb{H}_{3} endows $C_{n}\left(\mathbb{H}_{3} ; A\right)$ with a Γ-module structure and we define the complex of coinvariant chains

$$
\begin{equation*}
C_{n}\left(\mathbb{H}_{3} ; A\right)_{\Gamma}:=C_{n}\left(\mathbb{H}_{3} ; A\right) /\langle\sigma-\gamma \sigma\rangle, \tag{3.33}
\end{equation*}
$$

where we quotient by the submodule generated by all $\sigma-\gamma \sigma$ with $\sigma \in C_{n}\left(\mathbb{H}_{3} ; A\right)$. Let $H_{n}\left(Y_{\Gamma} ; A\right)$ be the homology of this complex. We define $H_{n}\left(X_{\Gamma} ; A\right)$ similarly.

Let $u_{0} \in \mathbb{H}_{3}$ be any basepoint and $\left[u_{0}, \gamma u_{0}\right]$ be a path joining u_{0} and γu_{0} for $\gamma \in \Gamma$. The boundary of $\left[u_{0}, \gamma u_{0}\right]$ is $\gamma u_{0}-u_{0}$ hence it represents a class in $H_{1}\left(Y_{\Gamma} ; \mathbb{C}\right)$.

PROPOSITION 3.1. The map $\Gamma \longrightarrow H_{1}\left(Y_{\Gamma} ; \mathbb{Z}\right)$ sending γ to $\left[u_{0}, \gamma u_{0}\right]$ is a surjective morphism and independent of u_{0}.

Proof. If Y_{Γ} were a manifold (for example if Γ were some congruence subgroup of $\operatorname{SL}_{2}(\mathscr{O})$) we could work with singular homology. Then the map would be the Hurewicz homomorphism, which is surjective since Y_{Γ} is path connected; see [Hat01, Theorem. 2A.1]. In the case of equivariant homology it works almost in the same way and we follow the proof of [Hat01].

We write $\left[a, a^{\prime}\right] \sim\left[b, b^{\prime}\right]$ for two homologous paths joining points a, a^{\prime}, b and b^{\prime} in \mathbb{H}_{3}. We have the following relations:

$$
\begin{align*}
& {[a, a] \sim 0} \tag{1}\\
& {[a, b]+[b, c] \sim[a, c]} \\
& {[a, b] \sim-[b, a]} \\
& {[a, \gamma a] \sim[b, \gamma b]} \\
& {[a, b] \sim[\gamma a, \gamma b]}
\end{align*}
$$

The first two ones are clear since $[a, a]$ is the boundary of the constant 2-simplex $C=\{a\}$ and $[a, b]-[a, c]+[b, c]$ is the boundary of the simplex joining a, b and c. The third one follows from (1) and (2). For (4) consider the two simplices C_{1} and C_{2} as in Figure 2. The boundaries are given by

$$
\begin{align*}
& \partial C_{1}=[\gamma a, \gamma b]-[a, \gamma b]+[a, \gamma a] \\
& \partial C_{2}=[b, \gamma b]-[a, \gamma b]+[a, b] \tag{3.34}
\end{align*}
$$

so that

$$
\begin{equation*}
\partial\left(C_{1}-C_{2}\right)=[a, \gamma a]-[b ; \gamma b]+[\gamma a, \gamma b]-[a, b]=[a, \gamma a]-[b, \gamma b] \tag{3.35}
\end{equation*}
$$

where $[\gamma a, \gamma b]-[a, b]=0$ since we are in the complex of coinvariants. For (5), consider the simplices

Figure 2: The equivalence $[a, \gamma a] \sim[b, \gamma b]$.
C_{1} and C_{2} as in Figure 3. The boundaries are given by

$$
\begin{align*}
\partial C_{1} & =[b, \gamma a]-[\gamma b, \gamma a]+[\gamma b, b] \\
\partial C_{2} & =[b, \gamma a]-[a, \gamma a]+[a, b] \tag{3.36}
\end{align*}
$$

so that

$$
\begin{equation*}
\partial\left(C_{1}-C_{2}\right)=[\gamma a, \gamma b]-[b, \gamma b]+[a, \gamma a]-[a, b]=[\gamma a, \gamma b]-[a, b] \tag{3.37}
\end{equation*}
$$

Let us now prove the statement of the proposition. The fact that it is independent of the basepoint follows from (4), and the fact that it is a homorphism follows from (2) and (4) since

$$
\begin{equation*}
\left[u_{0}, \gamma_{1} u_{0}\right]+\left[u_{0}, \gamma_{2} u_{0}\right] \sim\left[\gamma_{2} u_{0}, \gamma_{1} \gamma_{2} u_{0}\right]+\left[u_{0}, \gamma_{2} u_{0}\right] \sim\left[u_{0}, \gamma_{1} \gamma_{2} u_{0}\right] \tag{3.38}
\end{equation*}
$$

For the surjectivity, suppose we have a class represented by a cycle

$$
\begin{equation*}
\sigma=\sum_{i=1}^{m} n_{i}\left[a_{i}, b_{i}\right] \in C_{1}\left(\mathbb{H}_{3}\right)_{\Gamma} \tag{3.39}
\end{equation*}
$$

After relabeling the paths we can suppose that $n_{i}= \pm 1$, and using (3) we can even suppose that $n_{i}=1$. Since the boundary is

$$
\begin{equation*}
\partial \sigma=\sum_{i}\left(b_{i}-a_{i}\right)=0 \tag{3.40}
\end{equation*}
$$

we necessarily have that every b_{j} is equal to $\gamma_{i j} a_{i}$ for a unique a_{i} and some $\gamma_{i j} \in \Gamma$. We can see it as a permutation on the set $\{1, \ldots, m\}$, where we send i to j if a_{i} is Γ-equivalent to b_{j}.

Figure 3: The equivalence $[a, b] \sim[\gamma a, \gamma b]$.

First suppose that the corresponding permutation is the identity i.e $b_{i}=\gamma_{i} a_{i}$ for every i. Then using (4) and the fact that the map is a morphism we get

$$
\begin{equation*}
\sigma=\sum_{i=1}^{m}\left[a_{i}, \gamma_{i} a_{i}\right] \sim \sum_{i=1}^{m}\left[u_{0}, \gamma_{i} u_{0}\right] \sim\left[u_{0}, \gamma_{1} \cdots \gamma_{m} u_{0}\right] \tag{3.41}
\end{equation*}
$$

Now suppose that the permutation contains some cycle of order n, which means that σ contains a cycle

$$
\begin{equation*}
\sigma^{\prime}=\left[a_{1}, \gamma_{n} a_{n}\right]+\left[a_{2}, \gamma_{1} a_{1}\right]+\left[a_{3}, \gamma_{2} a_{2}\right]+\cdots+\left[a_{n}, \gamma_{n-1} a_{n-1}\right] . \tag{3.42}
\end{equation*}
$$

Using (5) and (2) we can sum the first two terms

$$
\begin{equation*}
\left[a_{1}, \gamma_{n} a_{n}\right]+\left[a_{2}, \gamma_{1} a_{1}\right] \sim\left[\gamma_{1} a_{1}, \gamma_{1} \gamma_{n} a_{n}\right]+\left[a_{2}, \gamma_{1} a_{1}\right] \sim\left[a_{2}, \gamma_{1} \gamma_{n} a_{n}\right] \tag{3.43}
\end{equation*}
$$

By induction we then get $\sigma^{\prime} \sim\left[a_{n}, \gamma_{n-1} \gamma_{n-2} \cdots \gamma_{1} \gamma_{n} a_{n}\right]$, so that we are reduced to the first case.

Integral structure on the cohomology. Let $\mathcal{R} \subset \mathbb{C}$ be a torsion free \mathscr{O}-submodule. We will later take $\mathcal{R}=\mathscr{O}_{F}$. We have a pairing

$$
\begin{align*}
\langle\quad\rangle: H_{1}\left(Y_{\Gamma} ; \mathbb{C}\right) \otimes H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right) & \longrightarrow \mathbb{C} \\
([\sigma],[\omega]) & \longmapsto \int_{\sigma} \omega \tag{3.44}
\end{align*}
$$

where $\omega \in \Omega^{1}\left(\mathbb{H}_{3} ; \mathbb{C}\right)^{\Gamma}$ and $\sigma \in C_{1}\left(\mathbb{H}_{3}\right)_{\Gamma}$; see [Fel05, Satz. 3]. Note that $\mathcal{R} \otimes_{\mathcal{R}} \mathbb{C}=\mathbb{C}$, so that we have a map

$$
\begin{equation*}
H_{1}\left(Y_{\Gamma} ; \mathcal{R}\right) \longrightarrow H_{1}\left(Y_{\Gamma} ; \mathcal{R}\right) \otimes_{\mathcal{R}} \mathbb{C}=H_{1}\left(Y_{\Gamma} ; \mathbb{C}\right) \tag{3.45}
\end{equation*}
$$

Let $\widetilde{H}_{1}\left(Y_{\Gamma} ; \mathcal{R}\right)$ be the image of this map. The kernel is the torsion part of $H_{1}\left(Y_{\Gamma} ; \mathcal{R}\right)$, so that we can identify $\widetilde{H}_{1}\left(Y_{\Gamma} ; \mathcal{R}\right)$ with the free part of $H_{1}\left(Y_{\Gamma} ; \mathcal{R}\right)$. We use the pairing to define the cohomology groups

$$
\begin{equation*}
\widetilde{H}^{1}\left(Y_{\Gamma} ; \mathcal{R}\right):=\left\{[\omega] \in H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right) \mid\langle[\omega],[\sigma]\rangle \in \mathcal{R} \quad \text { for all }[\sigma] \in \widetilde{H}_{1}\left(Y_{\Gamma} ; \mathcal{R}\right)\right\} \tag{3.46}
\end{equation*}
$$

Since \mathcal{R} is torsion-free, we can identify $H_{1}\left(Y_{\Gamma} ; \mathcal{R}\right)$ with $H_{1}\left(Y_{\Gamma} ; \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathcal{R}$. Hence, by Proposition 3.1 a class $[\omega]$ is in $\widetilde{H}^{1}\left(Y_{\Gamma} ; \mathcal{R}\right)$ if and only if

$$
\begin{equation*}
\int_{u_{0}}^{\gamma u_{0}} \omega \in \mathcal{R} \tag{3.47}
\end{equation*}
$$

for all $\gamma \in \Gamma$.
Remark 3.1. The \mathcal{R}-module $\widetilde{H}^{1}\left(Y_{\Gamma} ; \mathcal{R}\right)$ is the torsion free part of the sheaf cohomology $H^{1}\left(Y_{\Gamma} ; \mathcal{R}\right)$, that we identify with the image

$$
\begin{equation*}
\operatorname{Im}\left(H^{1}\left(Y_{\Gamma} ; \mathcal{R}\right) \longrightarrow H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)\right) \tag{3.48}
\end{equation*}
$$

3.3 Cohomology of the boundary

Recall that for any matrix M in $\mathrm{SL}_{2}(K)$ sending r to ∞ we had a map (3.17)

$$
\begin{aligned}
\phi_{M, r}: \Gamma_{r} \backslash \mathcal{H}_{r} & \longrightarrow \mathbb{C} / \mathfrak{a}_{M}^{-2}, \\
\Gamma_{r}(z: 1) & \longmapsto M z
\end{aligned}
$$

where $\mathfrak{a}_{M}=(m)+(n)$. Note that if $c=[r]$, then $\left[\mathfrak{a}_{M}\right]=\left[\mathfrak{a}_{c}\right]$ in the bijection (3.8) between C_{Γ} and $\mathrm{Cl}(K)$.

Lemma 3.2. Let χ be an unramified Hecke character of infinity type ($-2,0$). The forms

$$
\begin{aligned}
& \omega_{\chi, r}:=\chi\left(\mathfrak{a}_{M}\right)^{-1} \phi_{M, r}^{*} d z \\
& \bar{\omega}_{\chi, r}:=\chi\left(\mathfrak{a}_{M}\right)^{-1} \phi_{M, r}^{*} d \bar{z}
\end{aligned}
$$

lie in $\widetilde{H}^{1}\left(\Gamma_{r} \backslash \mathcal{H}_{r}, \mathscr{O}_{F}\right)$ and do not depend on the choice of M. Furthermore, we have $\gamma^{*} \omega_{\chi, r}=$ $\omega_{\chi, \gamma^{-1} r}$ and $\gamma^{*} \bar{\omega}_{\chi, r}=\bar{\omega}_{\chi, \gamma^{-1} r}$.

Proof. We prove the statements for $\omega_{\chi, r}$, they are similar for $\bar{\omega}_{\chi, r}$. Since \mathfrak{a}_{M}^{-2} is the period lattice of the elliptic curve $\mathbb{C} / \mathfrak{a}_{M}^{-2}$, we have

$$
\int_{\gamma} d z \in \mathfrak{a}_{M}^{-2}
$$

for any $\gamma \in H_{1}\left(\mathbb{C} / \mathfrak{a}_{M}^{-2}, \mathbb{Z}\right)$. After tensoring with \mathscr{O}_{F} and recalling from the proof of Proposition 2.3 that $\chi\left(\mathfrak{a}_{M}\right) \mathscr{O}_{F}=\mathfrak{a}_{M}^{-2} \mathscr{O}_{F}$, we get that

$$
\begin{equation*}
\int_{\gamma} \chi\left(\mathfrak{a}_{M}\right)^{-1} d z \in \chi\left(\mathfrak{a}_{M}\right)^{-1} \mathfrak{a}_{M}^{-2} \mathscr{O}_{F} \subset \mathscr{O}_{F} \tag{3.49}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\chi(\mathfrak{a})^{-1} d z \in \widetilde{H}^{1}\left(\mathbb{C} / \mathfrak{a}_{M}^{-2}, \mathscr{O}_{F}\right) \tag{3.50}
\end{equation*}
$$

Hence the pullback $\omega_{\chi, r}$ is also integral. Now suppose that N is another matrix in $\mathrm{SL}_{2}(K)$ sending r to ∞. Then $M=P N$ where $P=\left(\begin{array}{cc}a & b \\ 0 & a^{-1}\end{array}\right)$. We have $\mathfrak{a}_{N}=a^{-1} \mathfrak{a}_{M}$ and the following diagram commutes

$$
\begin{equation*}
\Gamma_{r} \backslash \mathcal{H}_{r} \xrightarrow{\Phi_{M, r}} \mathbb{C} / \mathfrak{a}_{M}^{-2} \tag{3.51}
\end{equation*}
$$

where the vertical map sends z to $N z=a^{2} z+a b$. Hence $N^{*} d z=a^{2} d z$ and

$$
\begin{equation*}
\chi\left(\mathfrak{a}_{N}^{-2}\right) \phi_{N, r}^{*} d z=a^{-2} \chi\left(\mathfrak{a}_{M}^{-2}\right) \phi_{M, r}^{*} N^{*} d z=\chi\left(\mathfrak{a}_{M}^{-2}\right) \phi_{M, r}^{*} d z . \tag{3.52}
\end{equation*}
$$

Finally, let γ be in Γ. We have seen that the form does not depend on the choice of M, so we can take $M \gamma$ to be the matrix in $\mathrm{SL}_{2}(K)$ sending $\gamma^{-1} r$ to ∞. We have $\mathfrak{a}_{M \gamma^{-1}}=\mathfrak{a}_{M}$ and the following diagram commutes

$$
\begin{gather*}
\Gamma_{r} \backslash \mathcal{H}_{r} \xrightarrow{\Phi_{M, r}} \mathbb{C} / \mathfrak{a}_{M}^{-2} \tag{3.53}\\
\downarrow \\
\Gamma_{\gamma^{-1} r} \backslash \mathcal{H}_{\gamma^{-1} r} \xrightarrow{\Phi_{M \gamma, r}} \underset{\longrightarrow}{\downarrow} / \mathfrak{a}_{M}^{-2} .
\end{gather*}
$$

Thus

$$
\begin{equation*}
\omega_{\chi, \gamma^{-1} r}=\chi\left(\mathfrak{a}_{M \gamma}\right)^{-1} \phi_{M \gamma, r}^{*} d z=\chi\left(\mathfrak{a}_{M}\right)^{-1} \gamma^{*} \phi_{M, r}^{*} d z=\omega_{\chi, r} . \tag{3.54}
\end{equation*}
$$

The complex conjugation on \mathbb{C} induces an involution on \mathbb{H}_{3}

$$
\begin{align*}
\iota: \mathbb{H}_{3} & \longrightarrow \mathbb{H}_{3} \\
z+j v & \longmapsto \bar{z}+j v . \tag{3.55}
\end{align*}
$$

It extends canonically to $\partial \mathbb{H}_{3}$ by sending $z \in \mathcal{H}_{r}$ to $\bar{z} \in \mathcal{H}_{\bar{r}}$. Consider the involution $I(\gamma)=\bar{\gamma}$ on Γ. One can check that

$$
\begin{equation*}
\iota \circ \gamma(u)=I(\gamma) \circ \iota(u) . \tag{3.56}
\end{equation*}
$$

Hence, the involution ι descends to an involution on X_{Γ} and restricts to an involution on ∂X_{Γ}. The pullback of differential forms by these involutions induce compatible involutions on $H^{1}\left(X_{\Gamma} ; \mathbb{C}\right)$ and $H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right)$. At the level of the boundary forms we have

$$
\begin{equation*}
\iota^{*} \omega_{\chi, r}=\bar{\omega}_{\chi, \bar{r}} . \tag{3.57}
\end{equation*}
$$

Let $H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right)^{-}$be the (-1)-eigenspace of this involution.

Proposition 3.3. We have

$$
\operatorname{dim} \operatorname{Im}(\mathrm{res})=\frac{1}{2} \operatorname{dim}_{\mathbb{C}} H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right)=h
$$

More precisely, the map

$$
H^{1}\left(X_{\Gamma}, \mathbb{C}\right) \longrightarrow H^{1}\left(\partial X_{\Gamma}, \mathbb{C}\right)^{-}
$$

is surjective.

Proof. The result follows from a theorem of Serre. We refer to [Ber09, Proposition. 24, Corollary. 26] for a proof. However, let us prove the statement about the dimension. Let

$$
\begin{equation*}
\alpha^{*}: H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right) \longrightarrow H^{2}\left(X_{\Gamma}, \partial X_{\Gamma} ; \mathbb{C}\right) \tag{3.58}
\end{equation*}
$$

be the map from the long exact sequence, so that $\operatorname{ker}\left(\alpha^{*}\right)=\operatorname{Im}($ res $)$. By Poincaré duality, we have

$$
\begin{equation*}
H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right)^{\vee} \simeq H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right) \tag{3.59}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{2}\left(X_{\Gamma}, \partial X_{\Gamma} ; \mathbb{C}\right) \simeq H_{c}^{2}\left(Y_{\Gamma} ; \mathbb{C}\right) \simeq H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)^{\vee} \tag{3.60}
\end{equation*}
$$

so that we can see α^{*} as a map

$$
\begin{equation*}
\alpha^{*}: H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right)^{\vee} \longrightarrow H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)^{\vee} \tag{3.61}
\end{equation*}
$$

Since for $\theta \in \Omega^{1}\left(\partial X_{\Gamma}\right)$ and $\omega \in H^{1}\left(X_{\Gamma}, \partial X_{\Gamma}\right)$ we have

$$
\begin{equation*}
\int_{X_{\Gamma}} \alpha(\theta) \wedge \omega=\int_{\partial X_{\Gamma}} \theta \wedge \operatorname{res}(\omega), \tag{3.62}
\end{equation*}
$$

it follows that $\alpha^{*}=\operatorname{res}^{\vee}$ is adjoint to res. Moreover, the space $\operatorname{Im}(\mathrm{res})$ is an isotropic subspace since

$$
\begin{equation*}
\operatorname{Im}(\mathrm{res})=\operatorname{ker}\left(\alpha^{*}\right)=\operatorname{ker}\left(\mathrm{res}^{\vee}\right)=\operatorname{Im}(\mathrm{res})^{\perp} . \tag{3.63}
\end{equation*}
$$

Thus, it must be of half the dimension of the total space.

3.4 Eisenstein map

In (3.29) we defined a restriction map

$$
\begin{equation*}
\text { res: } H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right) \longrightarrow H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right) . \tag{3.64}
\end{equation*}
$$

The kernel is the interior cohomology $H_{!}^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)$ and can be identified with the image of the compactly supported cohomology inside $H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)$. We will define an Eisenstein map

$$
\begin{equation*}
\text { Eis: } H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right) \longrightarrow H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right) \tag{3.65}
\end{equation*}
$$

whose image will be the Eisenstein cohomology $H_{\text {Eis }}^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)$.
Remark 3.2. As it will follow from Proposition 3.9, the map Eis is not a section of res, i.e. we do not have res \circ Eis $=1$.

We begin by defining a map

$$
\begin{equation*}
\text { Eis: } H^{1}\left(\Gamma_{\infty} \backslash \mathcal{H}_{\infty} ; \mathbb{C}\right) \longrightarrow H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right) \tag{3.66}
\end{equation*}
$$

at the cusp ∞. We have a Γ_{∞}-equivariant map

$$
\begin{align*}
p_{\infty}: \mathbb{H}_{3} & \longrightarrow \mathcal{H}_{\infty}, \\
z+j v & \longmapsto(z: 1), \tag{3.67}
\end{align*}
$$

that we can use to pull back a form ω_{∞} in $\Omega^{1}\left(\mathcal{H}_{\infty}\right)^{\Gamma_{\infty}}$ to a form

$$
\begin{equation*}
p_{\infty}^{*} \omega_{\infty} \in \Omega^{1}\left(\mathbb{H}_{3}\right)^{\Gamma_{\infty}} . \tag{3.68}
\end{equation*}
$$

To obtain a form on Y_{Γ} we define

$$
\begin{equation*}
\operatorname{Eis}\left(\omega_{\infty}\right):=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \gamma^{*} p^{*} \omega \in \Omega^{1}\left(\mathbb{H}_{3}\right)^{\Gamma} . \tag{3.69}
\end{equation*}
$$

Similarly, at the other cusps r we can define the Γ_{r}-equivariant map

$$
\begin{equation*}
p_{r}: \mathbb{H}_{r} \longrightarrow \mathcal{H}_{r} \tag{3.70}
\end{equation*}
$$

to be the composition $p_{r}=M^{-1} \circ p_{\infty} \circ M$:

$$
\begin{align*}
& \mathbb{H}_{3} \ldots{ }^{p_{r}} \ldots \mathcal{H}_{r} \\
& \underset{\mathbb{H}_{3}}{{ }_{M}{ }^{M} \xrightarrow{p_{\infty}}{ }^{M^{-1} \uparrow} \mathcal{H}_{\infty},} \tag{3.71}
\end{align*}
$$

where M is a matrix in $\mathrm{SL}_{2}(K)$ sending r to ∞ as earlier. Note that p_{r} does not depend on the choice of M since

$$
\left(\begin{array}{cc}
a & b \tag{3.72}\\
0 & a^{-1}
\end{array}\right)^{-1} \circ p_{\infty} \circ\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right)=p_{\infty} .
$$

For a form ω_{r} in $\Omega^{1}\left(\mathcal{H}_{r}\right)^{\Gamma_{r}}$ we define

$$
\begin{equation*}
\operatorname{Eis}\left(\omega_{r}\right)=\sum_{\gamma \in \Gamma_{r} \backslash \Gamma} \gamma^{*} p_{r}^{*} \omega_{r} \in \Omega^{1}\left(\mathbb{H}_{3}\right)^{\Gamma} . \tag{3.73}
\end{equation*}
$$

However, the sums (3.69) and (3.73) are not convergent, and need to be regularized.

3.5 Regularization of the Eisenstein series

Since $\omega_{\chi, r}$ and $\bar{\omega}_{\chi, r}=\iota^{*} \omega_{\chi, \bar{r}}$ span the space of forms on $\Gamma_{r} \backslash \mathcal{H}_{r}$, it is enough to regularize

$$
\begin{equation*}
E_{\chi, c}:=\operatorname{Eis}\left(\omega_{\chi, r}\right) \in \Omega^{1}\left(\mathbb{H}_{3}\right)^{\Gamma}, \tag{3.74}
\end{equation*}
$$

where $c=[r]$ is a cusp. Note that the left hand side only depends on c since for γ in Γ we have

$$
\begin{equation*}
\operatorname{Eis}\left(\omega_{\chi, \gamma^{-1} r}\right)=\operatorname{Eis}\left(\gamma^{*} \omega_{\chi, r}\right)=\operatorname{Eis}\left(\omega_{\chi, r}\right) \tag{3.75}
\end{equation*}
$$

In particular, we will frequently denote this form by $E_{\chi, \mathfrak{a}}$ where \mathfrak{a} is in the ideal class of \mathfrak{a}_{c}, corresponding to the cusp c.

Let $r=(m: n)$ be represented by coprime integers and let M in $\mathrm{SL}_{2}(K)$ be the matrix as earlier, sending r to ∞. We have:

$$
\begin{align*}
E_{\chi, c} & =\chi\left(\mathfrak{a}_{M}\right)^{-1} \sum_{\gamma \in \Gamma_{r} \backslash \Gamma} \gamma^{*} M^{*} d z \\
& =\chi\left(\mathfrak{a}_{M}\right)^{-1} \sum_{\gamma \in\left(M \Gamma_{r} M^{-1}\right) \backslash M \Gamma} \gamma^{*} d z \\
& =\chi\left(\mathfrak{a}_{M}\right)^{-1} \sum_{\gamma \in \Gamma\left(\mathfrak{a}_{M}^{-2}\right) \backslash M \Gamma} \alpha^{*} d z . \tag{3.76}
\end{align*}
$$

Since $\left[\mathfrak{a}_{M}\right]=\left[\mathfrak{a}_{c}\right]$, we have

$$
\begin{equation*}
E_{\chi, \mathfrak{a}}=\chi(\mathfrak{a})^{-1} \sum_{\gamma \in \Gamma\left(\mathfrak{a}^{-2}\right) \backslash M \Gamma} \alpha^{*} d z \tag{3.77}
\end{equation*}
$$

Lemma 3.4. The map

$$
\begin{align*}
& \Gamma\left(\mathfrak{a}_{M}^{-2}\right)_{\infty} \backslash M \Gamma \longrightarrow\left\{(c, d) \in \mathfrak{a}_{M} \times \mathfrak{a}_{M} \mid(c)+(d)=\mathfrak{a}_{M}\right\} \\
& \alpha=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longmapsto(c, d)=(0,1) \alpha \tag{3.78}
\end{align*}
$$

is a bijection.

Proof. First we have a bijection

$$
\begin{align*}
&\left(\pm \Gamma_{\infty}\right) \backslash \Gamma \longrightarrow(1,0) \Gamma \\
& \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longmapsto(c, d)=(0,1) \gamma \tag{3.79}
\end{align*}
$$

After moving the orbit by $M=\left(\begin{array}{cc}y & -x \\ -n & m\end{array}\right)$ this becomes a bijection

$$
\begin{gather*}
\left(\pm \Gamma\left(\mathfrak{a}^{-2}\right)_{\infty}\right) \backslash M \Gamma \longrightarrow(0,1) M \Gamma=(-n, m) \Gamma \\
\alpha=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longmapsto(0,1) \alpha=(c, d) \tag{3.80}
\end{gather*}
$$

where α is in $M \Gamma$. Moreover, the orbit $(-n: m) \Gamma$ is in bijection with the set

$$
\begin{equation*}
\left\{(c, d) \in \mathfrak{a}_{M} \times \mathfrak{a}_{M} \mid(c)+(d)=\mathfrak{a}_{M}\right\} / \mathscr{O}^{\times} \tag{3.81}
\end{equation*}
$$

where $\mathscr{O}^{\times}=\{ \pm 1\}$ acts diagonally on $\mathfrak{a}_{M} \times \mathfrak{a}_{M}$. First, for $\gamma \in \Gamma$ we have $(c, d)=(-n, m) \gamma \in$ $\mathfrak{a}_{M} \times \mathfrak{a}_{M}$. Furthermore, since the rows of γ are coprime we have $(c)+(d)=(n)+(m)=\mathfrak{a}_{M}$. Conversely, suppose that we have a pair $(c, d) \in \mathfrak{a}_{M} \times \mathfrak{a}_{M}$ such that $(c)+(d)=\mathfrak{a}_{M}$. Hence $(c) \mathfrak{a}_{M}^{-1}+(d) \mathfrak{a}_{M}^{-1}=\mathscr{O}$ and we can find $(b, a) \in \mathfrak{a}_{M}^{-1} \times \mathfrak{a}_{M}^{-1}$ such that $b c-a d=1$. We then have a matrix

$$
\left(\begin{array}{ll}
a & b \tag{3.82}\\
c & d
\end{array}\right) \in\left(\begin{array}{cc}
\mathfrak{a}_{M}^{-1} & \mathfrak{a}_{M}^{-1} \\
\mathfrak{a}_{M} & \mathfrak{a}_{M}
\end{array}\right) \cap \mathrm{SL}_{2}(K)
$$

Then

$$
M^{-1}\left(\begin{array}{ll}
a & b \tag{3.83}\\
c & d
\end{array}\right) \in\left(\begin{array}{cc}
\mathfrak{a}_{M} & \mathfrak{a}_{M}^{-1} \\
\mathfrak{a}_{M} & \mathfrak{a}_{M}^{-1}
\end{array}\right)\left(\begin{array}{cc}
\mathfrak{a}_{M}^{-1} & \mathfrak{a}_{M}^{-1} \\
\mathfrak{a}_{M} & \mathfrak{a}_{M}
\end{array}\right) \cap \mathrm{SL}_{2}(K)=\Gamma
$$

and we can write

$$
\begin{align*}
(c, d)=(0,1)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =(0,1) M\left(M^{-1}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \\
& =(-n, m)\left(M^{-1}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \in(-n, m) \Gamma \tag{3.84}
\end{align*}
$$

Composing the two bijections we then have

$$
\begin{align*}
& \left(\pm \Gamma\left(\mathfrak{a}_{M}^{-2}\right)_{\infty}\right) \backslash M \Gamma \longrightarrow\left\{(c, d) \in \mathfrak{a}_{M} \times \mathfrak{a}_{M} \mid(c)+(d)=\mathfrak{a}_{M}\right\} / \mathscr{O}^{\times} \\
& \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longmapsto(c, d) . \tag{3.85}
\end{align*}
$$

The lemma follows from the observation that the action of ± 1 on the left hand side correspond to the action of \mathscr{O}^{\times}on the right hand side.

For $u=z+j v \in \mathbb{H}_{3}$ let $z(u)=z, \bar{z}(u)=\bar{z}$ and $v(u)=v$ be the coordinate functions. Let $\alpha \in \mathrm{SL}_{2}(\mathbb{C})$ and

$$
\begin{equation*}
\eta(u, c, d):=\alpha^{*}(d z) \tag{3.86}
\end{equation*}
$$

where $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. It follows from (3.56) that

$$
\begin{equation*}
\iota^{*} \eta(u, \bar{c}, \bar{d})=\iota^{*} I(\alpha)^{*}(d z)=\alpha^{*}\left(\iota^{*} d z\right)=\alpha^{*}(d \bar{z}) \tag{3.87}
\end{equation*}
$$

The following calculations will indeed show that η and $\bar{\eta}$ depend only on c and d. We have

$$
\begin{equation*}
z(\alpha u)=\frac{(a z+b) \overline{(c z+d)}+a \bar{c} v^{2}}{|c z+d|^{2}+|c v|^{2}} \tag{3.88}
\end{equation*}
$$

and

$$
\begin{equation*}
v(\alpha u)=\frac{v}{|c z+d|^{2}+|c v|^{2}} \tag{3.89}
\end{equation*}
$$

We view $d z$ as the differential of the coordinate map $z(u)$, hence

$$
\begin{equation*}
\eta(u, c, d)=\eta(u, c, d)_{z} d z+\eta(u, c, d)_{\bar{z}} d \bar{z}+\eta(u, c, d)_{v} d v \tag{3.90}
\end{equation*}
$$

where

$$
\begin{align*}
& \eta(u, c, d)_{z}=\frac{\partial z(\alpha u)}{\partial z}=\frac{(\overline{c z+d})^{2}}{\left(|c z+d|^{2}+|c v|^{2}\right)^{2}} \\
& \eta(u, c, d)_{\bar{z}}=\frac{\partial z(\alpha u)}{\partial \bar{z}}=\frac{-(\bar{c} v)^{2}}{\left(|c z+d|^{2}+|c v|^{2}\right)^{2}} \tag{3.91}\\
& \eta(u, c, d)_{v}=\frac{\partial z(\alpha u)}{\partial v}=2 \frac{(\overline{c z+d}) \bar{c} v}{\left(|c z+d|^{2}+|c v|^{2}\right)^{2}}
\end{align*}
$$

If $J((c, d), u)$ is the Jacobian

$$
J(\alpha, u):=\left(\begin{array}{ccc}
\frac{\partial z(\alpha u)}{\partial z} & \frac{\partial z(\alpha u)}{\partial \bar{z}} & \frac{\partial z(\alpha u)}{\partial v} \tag{3.92}\\
\frac{\partial \bar{z}(\alpha u)}{\partial z} & \frac{\partial \bar{z}(\alpha u)}{\partial \bar{z}} & \frac{\partial \bar{z}(\alpha u)}{\partial v} \\
\frac{\partial v(\alpha u)}{\partial z} & \frac{\partial v(\alpha u)}{\partial \bar{z}} & \frac{\partial v(\alpha u)}{\partial v}
\end{array}\right),
$$

then

$$
\eta(u, c, d)=(1,0,0) J(\alpha, u)\left(\begin{array}{l}
d z \tag{3.93}\\
d \bar{z} \\
d v
\end{array}\right)
$$

It follows from the previous lemma

$$
\begin{equation*}
E_{\chi, \mathfrak{a}}=\chi(\mathfrak{a})^{-1} \sum_{\substack{(c, d) \in \mathfrak{a} \times \mathfrak{a} \\(c)+(d)=\mathfrak{a}_{M}}} \eta(u, c, d) \tag{3.94}
\end{equation*}
$$

This sum does not converge, and in order to regularize it we define for a complex number s :

$$
\begin{align*}
\eta(u, c, d, s) & :=\alpha^{*}\left(v^{s} d z\right) \\
& =(1,0,0) J(\alpha, u) v(\alpha u)^{s}\left(\begin{array}{l}
d z \\
d \bar{z} \\
d v
\end{array}\right) . \tag{3.95}
\end{align*}
$$

More precisely we have

$$
\begin{equation*}
\eta(u, c, d, s)=\eta(u, c, d, s)_{z} d z+\eta(u, c, d, s)_{\bar{z}} d \bar{z}+\eta(u, c, d, s)_{v} d v \tag{3.96}
\end{equation*}
$$

with

$$
\begin{align*}
\eta(u, c, d, s)_{z} & :=v^{s} \frac{(\overline{c z+d})^{2}}{\left(|c z+d|^{2}+|c v|^{2}\right)^{2+s}} \\
\eta(u, c, d, s)_{\bar{z}} & :=v^{s} \frac{-(\bar{c} v)^{2}}{\left(|c z+d|^{2}+|c v|^{2}\right)^{2+s}} \tag{3.97}\\
\eta(u, c, d, s)_{v} & :=2 v^{s} \frac{(\overline{c z+d}) \bar{c} v}{\left(|c z+d|^{2}+|c v|^{2}\right)^{2+s}}
\end{align*}
$$

For an ideal \mathfrak{a} and an unramified Hecke character χ of infinity type $(-2,0)$ we define

$$
\begin{equation*}
E_{\chi, \mathfrak{a}}(u, s):=\chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} \sum_{\substack{(c, d) \in \mathfrak{a} \times \mathfrak{a} \\(c)+(d)=\mathfrak{a}}} \eta(u, c, d, s) . \tag{3.98}
\end{equation*}
$$

Let us also define the forms

$$
\begin{equation*}
\widehat{E}_{\chi, \mathfrak{a}}(u, s):=\chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} \sum_{(c, d) \in \mathfrak{a} \times \mathfrak{a}} \eta(u, c, d, s), \tag{3.99}
\end{equation*}
$$

that appear in [Ito87; BCG23]. Note that here we sum over $\mathfrak{a} \times \mathfrak{a}$ instead of the subset with $(c)+(d)=\mathfrak{a}$ as is (3.98). We have

$$
\begin{equation*}
\widehat{E}_{\chi, \mathfrak{a}}(u, s)=\widehat{E}_{\chi, \mathfrak{a}, z}(u, s) d z+\widehat{E}_{\chi, \mathfrak{a}, \bar{z}}(u, s) d \bar{z}+\widehat{E}_{\chi, \mathfrak{a}, v}(u, s) d v \tag{3.100}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{E}_{\chi, \mathfrak{a}, z}(u, s):=\chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} \sum_{(c, d) \in \mathfrak{a} \times \mathfrak{a}} \eta(u, c, d, s)_{z} \tag{3.101}
\end{equation*}
$$

and similarly for $\widehat{E}_{\chi, \mathfrak{a}, \bar{z}}(u, s)$ and $\widehat{E}_{\chi, \mathfrak{a}, v}(u, s)$. By (3.93) we have

$$
\begin{equation*}
\left(\widehat{E}_{\chi, \mathfrak{a}, z}(u, s), \widehat{E}_{\chi, \mathfrak{a}, \bar{z}}(u, s), \widehat{E}_{\chi, \mathfrak{a}, v}(u, s)\right)=\chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} \sum_{(c, d) \in \mathfrak{a} \times \mathfrak{a}}(1,0,0) J(\alpha, u) v(\alpha u)^{s} . \tag{3.102}
\end{equation*}
$$

Since $\eta(u, \kappa c, \kappa d, s)=\kappa^{-2}|\kappa|^{-2 s} \eta(u, c, d, s)$ and $\chi((\kappa))^{-1} \mathrm{~N}(\kappa)^{s}=\kappa^{2}|\kappa|^{2 s}$, the forms $E_{\chi, \mathfrak{a}}(u, s)$ and $\widehat{E}_{\chi, \mathfrak{a}}(u, s)$ do not depend on the choice of the representative \mathfrak{a} of the class [\mathfrak{a}.

Proposition 3.5. We have

$$
\widehat{E}_{\chi, \mathfrak{a}}(u, s)=\sum_{i=1}^{h} \frac{\chi\left(\mathfrak{a}_{i} \mathfrak{a}^{-1}\right)}{w\left(\mathfrak{a}_{i}^{-1} \mathfrak{a}\right) \mathrm{N}\left(\mathfrak{a}_{i} \mathfrak{a}^{-1}\right)^{s}} G\left(1+s, 2,0,0 ; \mathfrak{a}_{i}^{-1} \mathfrak{a}\right) E_{\chi, \mathfrak{a}_{i}}(u, s) .
$$

Proof. First we have

$$
\begin{align*}
\widehat{E}_{\chi, \mathfrak{a}}(u, s) & =\frac{\mathrm{N}(\mathfrak{a})^{s}}{\chi(\mathfrak{a})} \sum_{(c, d) \in \mathfrak{a} \times \mathfrak{a}} \eta(u, c, d, s) \\
& =\sum_{0 \neq \mathfrak{c} \subseteq \mathscr{O}} \frac{\chi(\mathfrak{c})}{\mathrm{N}(\mathfrak{c})^{s}} \frac{\mathrm{~N}(\mathfrak{a c})^{s}}{\chi(\mathfrak{a c})} \sum_{\substack{(c, d) \in \mathfrak{a} \times \mathfrak{a} \\
(c)+(d)=\mathfrak{a} \mathfrak{c}}} \eta(u, c, d, s) . \tag{3.103}
\end{align*}
$$

Note that if $(c, d) \in \mathfrak{a} \times \mathfrak{a}$ with $(c)+(d)=\mathfrak{a c}$, then $(c, d) \in \mathfrak{a} \mathfrak{c} \times \mathfrak{a c}$. Hence

$$
\begin{equation*}
\widehat{E}_{\chi, \mathfrak{a}}(u, s)=\sum_{0 \neq \mathfrak{c} \subseteq \mathscr{O}} \frac{\chi(\mathfrak{c})}{\mathrm{N}(\mathfrak{c})^{s}} E_{\chi, \mathfrak{c a}}(u, s) \tag{3.104}
\end{equation*}
$$

We write $\mathfrak{c a}=\mathfrak{a}_{i}(\alpha)$ for some representative \mathfrak{a}_{i} of the class group. Then $E_{\chi, \mathfrak{c a}}(u, s)=E_{\chi, \mathfrak{a}_{i}}(u, s)$ and we get

$$
\begin{equation*}
\widehat{E}_{\chi, \mathfrak{a}}(u, s)=\sum_{i=1}^{h} \frac{1}{w\left(\mathfrak{a}_{i}^{-1} \mathfrak{a}\right)} \frac{\chi\left(\mathfrak{a}_{i} \mathfrak{a}^{-1}\right)}{\mathrm{N}\left(\mathfrak{a}_{i} \mathfrak{a}^{-1}\right)^{s}} \sum_{0 \neq \alpha \subseteq \mathfrak{a}_{i}^{-1} \mathfrak{a}} \frac{1}{\alpha^{2}|\alpha|^{2 s}} E_{\chi, \mathfrak{a}_{i}}(u, s) \tag{3.105}
\end{equation*}
$$

Proposition 3.6. The series $\widehat{E}_{\chi, \mathfrak{a}}(u, s)$ and $E_{\chi, \mathfrak{a}}(u, s)$ converge for $\operatorname{Re}(s) \gg 0$ and admit an analytic continuation to the whole plane. Moreover, at $s=0$, the forms $\widehat{E}_{\chi, \mathfrak{a}}(u):=\left.\widehat{E}_{\chi, \mathfrak{a}}(u, s)\right|_{s=0}$ and $E_{\chi, \mathfrak{a}}(u):=\left.E_{\chi, \mathfrak{a}}(u, s)\right|_{s=0}$ at $s=0$ are closed and are related by

$$
\widehat{E}_{\chi, \mathfrak{a}}(u)=\sum_{i=1}^{h} \frac{\chi\left(\mathfrak{a}_{i} \mathfrak{a}^{-1}\right)}{w\left(\mathfrak{a}_{i}^{-1} \mathfrak{a}\right)} G_{2}\left(\mathfrak{a}_{i}^{-1} \mathfrak{a}\right) E_{\chi, \mathfrak{a}_{i}}(u)
$$

Proof. The analytic continuation of $\widehat{E}_{\chi, \mathfrak{a}}(u, s)$ can be done by Poisson summation, see for example [BCG23, page. 18]. The fact that the forms $\widehat{E}_{\chi, \mathfrak{a}}(u, s)$ are closed is the content of [BCG23, Proposition. 3.3]. The same results holds for $E_{\chi, \mathfrak{a}}$ by the previous proposition.

The Eisenstein operator. It follows from (3.56) and (3.57) that

$$
\begin{equation*}
\operatorname{Eis}\left(\bar{\omega}_{\chi, r}\right)=\operatorname{Eis}\left(\iota^{*} \omega_{\chi, \bar{r}}\right)=\iota^{*} \operatorname{Eis}\left(\omega_{\chi, \bar{r}}\right)=\iota^{*} E_{\chi, c} \tag{3.106}
\end{equation*}
$$

where ι is the involution induced by complex conjugation. The cohomology $H^{1}\left(\Gamma_{r} \backslash \mathcal{H}_{r} ; \mathbb{C}\right)$ is spanned by $\omega_{\chi, r}$ and $\bar{\omega}_{\chi, r}$. Hence if $\epsilon_{r}=\alpha \omega_{\chi, r}+\beta \bar{\omega}_{\chi, r}$ we have

$$
\begin{equation*}
\operatorname{Eis}\left(\epsilon_{r}\right)=\alpha E_{\chi, c}+\beta \iota^{*} E_{\chi, c} \tag{3.107}
\end{equation*}
$$

Since $H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right)=\bigoplus_{c=[r] \in C_{\Gamma}} H^{1}\left(\Gamma_{r} \backslash \mathcal{H}_{r} ; \mathbb{C}\right)$, we have a map

$$
\begin{align*}
& \text { Eis: } H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right) \longrightarrow H^{1}\left(Y_{\Gamma} ; \mathbb{C}\right) \\
& \sum_{c=[r] \in C_{\Gamma}} \lambda_{c} \epsilon_{r} \longmapsto \sum_{c=[r] \in C_{\Gamma}} \lambda_{c}\left(\alpha E_{\chi, c}+\beta \iota^{*} E_{\chi, c}\right) . \tag{3.108}
\end{align*}
$$

This the map (1.2) in the introduction.

3.6 Fourier expansions and constant terms

At the cusp ∞. By Ito's computation [Ito87, p. 152], we have the following Fourier expansions of the Eisenstein series:

$$
\begin{align*}
\widehat{E}_{\chi, \mathfrak{a}, z}(u, s)= & \chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} v^{s} G(1+s, 2,0,0 ; \mathfrak{a}) \\
& -\frac{2 i(2 \pi)^{s+2}}{\mathcal{D}(\mathfrak{a}) \Gamma(s+2)} v \sum_{\substack{(c, d) \in \mathfrak{a} \times \mathfrak{a}^{\vee} \\
c d \neq 0}} d^{2}\left|\frac{d}{c}\right|^{s-1} K_{s-1}(4 \pi|c d| v) e(c d z) \tag{3.109}
\end{align*}
$$

and

$$
\begin{align*}
\widehat{E}_{\chi, \mathfrak{a}, \bar{z}}(u, s)= & -\frac{\chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} 2 i \pi}{D(\mathfrak{a})} G(s, 2,0,0 ; \mathfrak{a}) \\
& -\frac{2 i(2 \pi)^{s+2}}{\mathcal{D}(\mathfrak{a}) \Gamma(s+2)} v \sum_{\substack{(c, d) \in \mathfrak{a} \times \mathfrak{a}^{\vee} \\
c d \neq 0}} \bar{c}^{2}\left|\frac{d}{c}\right|^{s+1} K_{s+1}(4 \pi|c d| v) e(c d z) \tag{3.110}
\end{align*}
$$

where $K_{\nu}(t)$ is the K-Bessel function, $e(z):=\exp (2 i \pi(z+\bar{z}))$, and $L^{\vee} \subset \mathbb{C}$ is the lattice dual to a lattice L. In particular at $s=0$ the constant term of $\widehat{E}_{\chi, \mathfrak{a}, z}(u)$ is $\chi(\mathfrak{a})^{-1} G_{2}(\mathfrak{a})$. By the functional equation (2.15), we find that the constant term of $\widehat{E}_{\chi, \mathfrak{a}, \bar{z}}(u)$ is

$$
\begin{equation*}
-\chi(\mathfrak{a})^{-1} G(\mathfrak{a})=-\chi(\mathfrak{a})^{-1} G_{2}(\mathfrak{a}) \tag{3.111}
\end{equation*}
$$

At other cusps. Let M be a matrix in $\mathrm{SL}_{2}(K)$ such that $M r=\infty$, as before. In this section let N denote the inverse of M. Hence

$$
N=M^{-1}=\left(\begin{array}{ll}
m & x \tag{3.112}\\
n & y
\end{array}\right) \in\left(\begin{array}{ll}
\mathfrak{a}_{M} & \mathfrak{a}_{M}^{-1} \\
\mathfrak{a}_{M} & \mathfrak{a}_{M}^{-1}
\end{array}\right)
$$

where $\mathfrak{a}_{M}=(m)+(n)$. Since

$$
\widehat{E}_{\chi, \mathfrak{a}}(u)=\left(\widehat{E}_{\chi, \mathfrak{a}, z}(u), \widehat{E}_{\chi, \mathfrak{a}, \bar{z}}(u), \widehat{E}_{\chi, \mathfrak{a}, v}(u)\right)\left(\begin{array}{c}
d z \tag{3.113}\\
d \bar{z} \\
d v
\end{array}\right)
$$

we have

$$
\left(N^{*} \widehat{E}_{\chi, \mathfrak{a}}(u)=\left(\widehat{E}_{\chi, \mathfrak{a}, z}(N u), \widehat{E}_{\chi, \mathfrak{a}, \bar{z}}(N u), \widehat{E}_{\chi, \mathfrak{a}, v}(N u)\right) J(N, u)\left(\begin{array}{l}
d z \tag{3.114}\\
d \bar{z} \\
d v
\end{array}\right)\right.
$$

where $J(N, u)$ is the Jacobian as in (3.92). We have

$$
\begin{equation*}
\left(\widehat{E}_{\chi, \mathfrak{a}, z}(N u), \widehat{E}_{\chi, \mathfrak{a}, \bar{z}}(N u), \widehat{E}_{\chi, \mathfrak{a}, v}(N u)\right)=\chi(\mathfrak{a})^{-1} \sum_{\alpha \in \mathfrak{a} \times \mathfrak{a}}(1,0,0) J(\alpha, N u) \tag{3.115}
\end{equation*}
$$

where $\alpha=\left(\begin{array}{ll}* & * \\ c & d\end{array}\right)$. Since $J(\alpha, N u) J(N, u)=J(\alpha N, u)$, we have

$$
N^{*} \widehat{E}_{\chi, \mathfrak{a}}(u)=\chi(\mathfrak{a})^{-1} \sum_{(c, d) \in \mathfrak{a} \times \mathfrak{a}}(1,0,0) J(\alpha N, u)\left(\begin{array}{l}
d z \tag{3.116}\\
d \bar{z} \\
d v
\end{array}\right)
$$

Let us define

$$
\begin{equation*}
\left(\widehat{E}_{z}^{(N)}(u, s), \widehat{E}_{\bar{z}}^{(N)}(u, s), \widehat{E}_{v}^{(N)}(u, s)\right):=\chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} \sum_{(c, d) \in \mathfrak{a} \times \mathfrak{a}}(1,0,0) J(\alpha N, u) v(\alpha N u)^{s} \tag{3.117}
\end{equation*}
$$

so that at $s=0$

$$
N^{*} \widehat{E}_{\chi, \mathfrak{a}}(u)=\left(\widehat{E}_{z}^{(N)}(u), \widehat{E}_{\bar{z}}^{(N)}(u), \widehat{E}_{v}^{(N)}(u)\right)\left(\begin{array}{l}
d z \tag{3.118}\\
d \bar{z} \\
d v
\end{array}\right)
$$

Since these series only appear in this section, we drop the indices χ and \mathfrak{a} to simplify the notation. For p in $\mathfrak{a} \mathfrak{a}_{M}$ we define $L_{p} \subset \mathbb{C}$ be the set of complex numbers $q=c x+d y$ where $(c, d) \in \mathfrak{a} \times \mathfrak{a}$ and $c m+d n=p$. By [Ito87, p. 162] there is a complex number $w(p)$ such that $L_{p}=w(p)+\mathfrak{a} \mathfrak{a}_{M}^{-1}$.

Lemma 3.7. For $p=0$ we have $L_{0}=\mathfrak{a d}_{M}^{-1}$.

Proof. Let $q \in L_{0}$. We can write $q=c x+d y$ where $(c, d) \in \mathfrak{a} \times \mathfrak{a}$ and $c m+d n=0$. Then

$$
\begin{align*}
n q & =n c x+n d y=n c x+y(-c m)=-c(m y-n x)=-c \in \mathfrak{a}, \\
m q & =m c x+m d y=(-d n) x+m d y=d \in \mathfrak{a} . \tag{3.119}
\end{align*}
$$

Hence $L_{0} \subset \mathfrak{a}(n)^{-1} \cap \mathfrak{a}(m)^{-1}$. Conversely, suppose that $q \in \mathfrak{a}(n)^{-1} \cap \mathfrak{a}(m)^{-1}$. Then we can write $n q=c$ and $m q=d$ for some $(c, d) \in \mathfrak{a} \times \mathfrak{a}$. Then $q \in L_{0}$ since $q=(x n-m y) q=c x-d y$. Hence we have proved that $L_{0}=\mathfrak{a}(n)^{-1} \cap \mathfrak{a}(m)^{-1}$. In particular, we have $\mathfrak{a}_{M}^{-1} \subset(n)^{-1}$ and $\mathfrak{a}_{M}^{-1} \subset(m)^{-1}$ since $n \in \mathfrak{a}_{M}$ and $m \in \mathfrak{a}_{M}$. It follows that $\mathfrak{a} \mathfrak{a}_{M}^{-1} \subset \mathfrak{a}(n)^{-1} \cap \mathfrak{a}(m)^{-1}=L_{0}$. On the other hand, we have that any $q=c x+d y \in L_{0}$ is in $\mathfrak{a a}_{M}^{-1}$ since $(x, y) \in \mathfrak{a}_{M}^{-1} \times \mathfrak{a}_{M}^{-1}$.

Hence we have

$$
\begin{align*}
& \left(\widehat{E}_{z}^{(N)}(u, s), \widehat{E}_{\bar{z}}^{(N)}(u, s), \widehat{E}_{v}^{(N)}(u, s)\right)=\chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} \sum_{p \in \mathfrak{a a}}^{M}{ }_{M} \sum_{q \in L_{p}}(1,0,0) J(\widetilde{\alpha}, u) v(\widetilde{\alpha} u)^{s}, \\
& =\chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} \sum_{p \in \mathfrak{a} a_{M}} \sum_{q \in L_{p}} \eta(u, p, q, s) \tag{3.120}
\end{align*}
$$

where $\widetilde{\alpha}=\alpha N=\left(\begin{array}{ll}* & * \\ p & q\end{array}\right)$. In particular, the z-component is

$$
\begin{equation*}
\widehat{E}_{z}^{(N)}(u, s)=\chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} v^{s} \sum_{p \in \mathfrak{a a}}^{M} \sum_{q \in L_{p}} \frac{(\overline{p z+q})^{2}}{\left(|p z+q|^{2}+|p v|^{2}\right)^{2+s}} \tag{3.121}
\end{equation*}
$$

where p and q are not both zero. The constant term is coming from the terms where $p=0$

$$
\begin{equation*}
\chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} v^{s} \sum_{q \in L_{0}} \frac{1}{q^{2}|q|^{2 s}}=\chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} v^{s} G\left(1+s, 2,0,0 ; \mathfrak{a} \mathfrak{a}_{M}^{-1}\right), \tag{3.122}
\end{equation*}
$$

since by Lemma 3.7 we have $L_{0}=\mathfrak{a} \mathfrak{a}_{M}^{-1}$. Hence at $s=0$ the constant term is $\chi(\mathfrak{a})^{-1} G_{2}\left(\mathfrak{a d}_{M}^{-1}\right)$. As in [Ito87, p. 162] we find that the constant term of the \bar{z}-component at $s=0$ is

$$
\begin{align*}
-\left.\frac{\chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} 2 i \pi}{\mathcal{D}\left(\mathfrak{a} \mathfrak{a}_{M}^{-1}\right)} G\left(s, 2,0,0 ; \mathfrak{a} \mathfrak{a}_{M}\right)\right|_{s=0} & =-\frac{\chi(\mathfrak{a})^{-1} \mathcal{D}\left(\mathfrak{a a}_{M}\right)}{\mathcal{D}\left(\mathfrak{a} \mathfrak{a}_{M}^{-1}\right)} G\left(\mathfrak{a} \mathfrak{a}_{M}\right) \\
& =-\chi(\mathfrak{a})^{-1} \mathrm{~N}\left(\mathfrak{a}_{M}\right)^{2} G_{2}\left(\mathfrak{a d}_{M}\right) . \tag{3.123}
\end{align*}
$$

The last equality follows from the following lemma.

Lemma 3.8. For a fractional ideal \mathfrak{b} we have $\mathcal{D}(\mathfrak{b})=-\sqrt{D} \mathrm{~N}(\mathfrak{b})$.

Proof. Recall that if $L=\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}$ with $\operatorname{Im}\left(\omega_{1} / \omega_{2}\right)>0$ then

$$
\mathcal{D}(L)=\omega_{1} \overline{\omega_{2}}-\overline{\omega_{1}} \omega_{2}=\left|\begin{array}{ll}
\omega_{1} & \omega_{2} \\
\overline{\omega_{1}} & \overline{\omega_{2}}
\end{array}\right| .
$$

Let $\mathfrak{b}=(a+b \tau) \mathbb{Z}+(c+d \tau) \mathbb{Z}$ a basis of \mathfrak{b} such that

$$
\operatorname{Im}\left(\frac{a+b \tau}{c+d \tau}\right)=\frac{(a d-b c) \sqrt{|D|}}{2|c+d \tau|}>0
$$

and where $\tau=\frac{1+\sqrt{D}}{2}$. Then

$$
\mathcal{D}(\mathfrak{b})=\left|\begin{array}{ll}
a+b \tau & c+d \tau \\
\overline{a+b \tau} & \overline{c+d \tau}
\end{array}\right|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|\left|\begin{array}{cc}
1 & 1 \\
\tau & \bar{\tau}
\end{array}\right|=-\sqrt{D}(a d-b c)
$$

Since the determinant $a d-b c$ is positive, we have

$$
a d-b c=|a d-b c|=\mathrm{N}(\mathfrak{b})
$$

Proposition 3.9. The restriction of the Eisenstein forms $\widehat{E}_{\chi, \mathfrak{a}}$ to the boundary components are

$$
\operatorname{res}_{r}\left(\widehat{E}_{\chi, \mathfrak{a}}\right)=\chi\left(\mathfrak{a}_{c} \mathfrak{a}^{-1}\right)\left(G_{2}\left(\mathfrak{a} \mathfrak{a}_{c}^{-1}\right) \omega_{\chi, r}-G_{2}\left(\mathfrak{a} \overline{\mathfrak{a}}_{c}^{-1}\right) \bar{\omega}_{\chi, r}\right),
$$

where $c=[r] \in C_{\Gamma}$. For the Eisenstein series $E_{\chi, \mathfrak{a}}$, the restriction is

$$
\operatorname{res}_{r}\left(E_{\chi, \mathfrak{a}}\right)=\delta_{\mathfrak{a}, \mathfrak{a}_{c}} \omega_{\chi, r}-\delta_{\mathfrak{a}, \overline{\mathfrak{a}}_{c}} \bar{\omega}_{\chi, r},
$$

where $\delta_{\mathfrak{u}, \mathfrak{v}}$ is defined by

$$
\delta_{\mathfrak{u}, \mathfrak{v}}= \begin{cases}1 & \text { if }[\mathfrak{u}]=[\mathfrak{v}] \\ 0 & \text { otherwise } .\end{cases}
$$

In particular, the restriction of $E_{\chi, \mathfrak{a}}$ to the boundary is integral.

Proof. Let M be any matrix in $\mathrm{SL}_{2}(K)$ sending r to ∞, and $N=M^{-1}$. By (3.26) we have

$$
\begin{equation*}
\operatorname{res}_{r}\left(\widehat{E}_{\chi, \mathfrak{a}}\right)=M^{*} \operatorname{res}_{\infty}\left(N^{*} \widehat{E}_{\chi, \mathfrak{a}}\right) \tag{3.124}
\end{equation*}
$$

where $\operatorname{res}_{\infty}(\omega)=\lim _{v \rightarrow \infty} \iota_{v}^{*} \omega$. After pulling back $N^{*} \widehat{E}_{\chi, \mathfrak{a}}(u)$ by the map $\iota_{v}(z)=z+j v$ we get

$$
\begin{equation*}
\iota_{v}^{*} N^{*} \widehat{E}_{\chi, \mathfrak{a}}(u)=\widehat{E}_{z}^{(N)}(u) d z+\widehat{E}_{\bar{z}}^{(N)}(u) d \bar{z} \tag{3.125}
\end{equation*}
$$

The limit of $\widehat{E}_{z}^{(N)}(u)$ as v goes to ∞ is the constant term in the Fourier expansion. Hence, we have

$$
\begin{equation*}
\lim _{v \rightarrow \infty} \widehat{E}_{z}^{(N)}(u)=\chi(\mathfrak{a})^{-1} G_{2}\left(\mathfrak{a} \mathfrak{a}_{M}^{-1}\right) \tag{3.126}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\lim _{v \rightarrow \infty} \widehat{E}_{\bar{z}}^{(N)}(u)=-\chi(\mathfrak{a})^{-1} \mathrm{~N}\left(\mathfrak{a}_{M}\right)^{2} G_{2}\left(\mathfrak{a} \mathfrak{a}_{M}\right) \tag{3.127}
\end{equation*}
$$

Since for any fractional \mathfrak{c} ideal we have $\mathfrak{c}=\mathrm{N}(\mathfrak{c}) \overline{\mathfrak{c}}^{-1}$, by the homogeneity of G_{2} we get

$$
\begin{equation*}
\lim _{v \rightarrow \infty} \widehat{E}_{\bar{z}}^{(N)}(u)=-\chi(\mathfrak{a})^{-1} G_{2}\left(\mathfrak{a} \overline{\mathfrak{a}}_{M}^{-1}\right) \tag{3.128}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{res}_{\infty} N^{*} \widehat{E}_{\chi, \mathfrak{a}}=\chi(\mathfrak{a})^{-1}\left(G_{2}\left(\mathfrak{a} \mathfrak{a}_{M}^{-1}\right) d z-G_{2}\left(\mathfrak{a} \overline{\mathfrak{a}}_{M}^{-1}\right) d \bar{z}\right) \tag{3.129}
\end{equation*}
$$

After pulling back by M, and using that $\left[\mathfrak{a}_{M}\right]=\left[\mathfrak{a}_{c}\right]$ we get

$$
\begin{equation*}
\operatorname{res}_{r} \widehat{E}_{\chi, \mathfrak{a}}=\chi\left(\mathfrak{a}_{c} \mathfrak{a}^{-1}\right)\left(G_{2}\left(\mathfrak{a} \mathfrak{a}_{c}^{-1}\right) \omega_{\chi, r}-G_{2}\left(\mathfrak{a} \overline{\mathfrak{a}}_{c}^{-1}\right) \bar{\omega}_{\chi, r}\right) \tag{3.130}
\end{equation*}
$$

Note that the right hand side of (3.130) does not depend on the ideal representatives \mathfrak{a}_{c}.
Let $\operatorname{res}_{r}\left(E_{\chi, \mathfrak{a}}\right)=\alpha(\mathfrak{a}) \omega_{\chi, r}+\beta(\mathfrak{a}) \bar{\omega}_{\chi, r}$ be the restriction of $E_{\chi, \mathfrak{a}}$ to the boundary component r. Since the restriction map is linear, it follows from Lemma 3.5 that

$$
\begin{align*}
\operatorname{res}_{r}\left(\widehat{E}_{\chi, \mathfrak{a}}\right) & =\sum_{i=1}^{h} \frac{\chi\left(\mathfrak{a}_{i} \mathfrak{a}^{-1}\right)}{w\left(\mathfrak{a}_{i}^{-1} \mathfrak{a}\right)} G_{2}\left(\mathfrak{a}_{i}^{-1} \mathfrak{a}\right) \operatorname{res}_{r}\left(E_{\chi, \mathfrak{a}_{i}}\right) \\
& =\left(\sum_{i=1}^{h} \frac{\chi\left(\mathfrak{a}_{i} \mathfrak{a}^{-1}\right)}{w\left(\mathfrak{a}_{i}^{-1} \mathfrak{a}\right)} G_{2}\left(\mathfrak{a}_{i}^{-1} \mathfrak{a}\right) \alpha\left(\mathfrak{a}_{i}\right)\right) \omega_{\chi, r}+\left(\sum_{i=1}^{h} \frac{\chi\left(\mathfrak{a}_{i} \mathfrak{a}^{-1}\right)}{w\left(\mathfrak{a}_{i}^{-1} \mathfrak{a}\right)} G_{2}\left(\mathfrak{a}_{i}^{-1} \mathfrak{a}\right) \beta\left(\mathfrak{a}_{i}\right)\right) \bar{\omega}_{\chi, r} \tag{3.131}
\end{align*}
$$

Comparing with (3.130) we see that

$$
\alpha\left(\mathfrak{a}_{i}\right)= \begin{cases}1 & \text { if } \quad\left[\mathfrak{a}_{i}\right]=\left[\mathfrak{a}_{c}\right] \tag{3.132}\\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\beta\left(\mathfrak{a}_{i}\right)= \begin{cases}-1 & \text { if } \quad\left[\mathfrak{a}_{i}\right]=\left[\overline{\mathfrak{a}}_{c}\right] \tag{3.133}\\ 0 & \text { otherwise }\end{cases}
$$

Thus $\alpha(\mathfrak{a})=\delta_{\mathfrak{a}, \mathfrak{a}_{c}}$ and $\beta(\mathfrak{a})=-\delta_{\mathfrak{a}, \overline{\mathfrak{a}}_{c}}$.
Remark 3.3. We will not discuss this further in the rest of the paper, but let us mention that the fact that the Eisenstein classes have an integral restriction to the boundary is an important property to find congruences. See [Ber09] for more on the relation between the denominator ideal, congruences and the Selmer group.

Proposition 3.10. The forms $\left\{E_{\chi, \mathfrak{a}}\right\}_{[\mathfrak{a}] \in C l(K)}$ span the Eisenstein cohomology $H_{\text {Eis }}^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)$.

Proof. Let V be the subspace of the Eisenstein cohomology spanned by the forms $E_{\chi, \mathfrak{a}}$. We know that the Eisenstein cohomology is h-dimensional, so $\operatorname{dim}(V) \leq h$. A class in $H^{1}\left(\partial X_{\Gamma} ; \mathbb{C}\right)$ is represented by a collection of forms $\alpha_{r} \omega_{\chi, r}+\beta_{r} \bar{\omega}_{\chi, r}$ with α_{r}, β_{r} two complex numbers such that $\alpha_{\gamma r}=\alpha_{r}$ and $\beta_{\gamma r}=\beta_{r}$. By Proposition 3.3, the image of the restriction is the -1 eigenspace by the involution ι. Hence if the class lies in $\operatorname{Im}($ res $)$, then we have in addition $\beta_{r}=-\alpha_{\bar{r}}$, by (3.57). It follows that the space $\operatorname{Im}(\mathrm{res})$ is spanned by the forms $\omega_{\chi, r}-\bar{\omega}_{\chi, \bar{r}}$. By the previous proposition, we have

$$
\begin{equation*}
\operatorname{res}\left(E_{\chi, \mathfrak{a}_{c}}\right)=\omega_{\chi, r}-\bar{\omega}_{\chi, \bar{r}} \tag{3.134}
\end{equation*}
$$

Hence the restriction map res: $V \longrightarrow \operatorname{Im}($ res $)$ is surjective and $\operatorname{dim}(V)=h$.

3.7 Relation to the Sczech cocycle

The forms $\widehat{E}_{\chi, \mathfrak{a}}$ in $\Omega^{1}\left(Y_{\Gamma} ; \mathbb{C}\right)$ define a cocycle in $H^{1}(\Gamma ; \mathbb{C})$ by

$$
\begin{equation*}
\widehat{E}_{\chi, \mathfrak{a}}(\gamma):=\int_{u_{0}}^{\gamma u_{0}} \widehat{E}_{\chi, \mathfrak{a}} \tag{3.135}
\end{equation*}
$$

Since the form is closed, the integral does not depend on the path from u_{0} to γu_{0}. The following result shows that this cocycle is Sczech's cocycle.

Theorem 3.11. We have

$$
\widehat{E}_{\chi, \mathfrak{a}}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\chi(\mathfrak{a})^{-1} \begin{cases}I\left(\frac{a+d}{c}\right) G_{2}(\mathfrak{a})-D(a, c, \mathfrak{a}) & \text { if } c \neq 0 \\
I\left(\frac{b}{d}\right) G_{2}(\mathfrak{a}) & \text { if } \quad c=0\end{cases}
$$

In particular, we have $\chi(\mathfrak{a}) \widehat{E}_{\chi, \mathfrak{a}}(\gamma)=\Phi_{\mathfrak{a}}(\gamma)$.

Proof. Let

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

1. Suppose that $c \neq 0$. For a real number $\epsilon>0$ consider the closed path $P_{\epsilon}(\gamma)$ in \mathbb{H}_{3} pictured in Figure 4 . Let us denote by $\left[u_{i}, u_{j}\right]$ the oriented segment from u_{i} to u_{j}. Since the path and the form are closed, by Stoke's theorem we have

$$
\begin{equation*}
\int_{P_{\epsilon}(\gamma)} \widehat{E}_{\chi, \mathfrak{a}}=0 \tag{3.136}
\end{equation*}
$$

for every $\epsilon>0$, and we will take the limit $\epsilon \rightarrow \infty$. The path $P_{\epsilon}(\gamma)$ can be translated by Γ to the path $\widetilde{P}_{\epsilon}(\gamma)$ in Figure 5 . Since the form is Γ-invariant, we have

$$
\begin{equation*}
\int_{\widetilde{P}_{\epsilon}(\gamma)} \widehat{E}_{\chi, \mathfrak{a}}=\int_{P_{\epsilon}(\gamma)} \widehat{E}_{\chi, \mathfrak{a}}=0 \tag{3.137}
\end{equation*}
$$

Moreover, since the two integrals along $\left[u_{1}, u_{2}\right]$ and $\left[u_{2}, u_{1}\right]$ cancel, it follows from Figure 5 that

$$
\begin{align*}
0 & =\int_{u_{0}}^{\gamma u_{0}} \widehat{E}_{\chi, \mathfrak{a}}+\int_{\gamma u_{3}}^{\gamma u_{4}} \widehat{E}_{\chi, \mathfrak{a}}+\int_{\gamma u_{4}}^{u_{2}} \widehat{E}_{\chi, \mathfrak{a}}+\int_{u_{2}}^{u_{3}} \widehat{E}_{\chi, \mathfrak{a}} \\
& =\int_{u_{0}}^{\gamma u_{0}} \widehat{E}_{\chi, \mathfrak{a}}+\int_{\gamma u_{3}}^{\gamma u_{4}} \widehat{E}_{\chi, \mathfrak{a}}+\int_{\gamma u_{4}}^{u_{3}} \widehat{E}_{\chi, \mathfrak{a}} . \tag{3.138}
\end{align*}
$$

Note that the endpoints $u_{3}, u_{4}, \gamma u_{3}$ and γu_{4} depend on ϵ, and that the equality above holds for any $\epsilon>0$. Taking the limit we get

$$
\begin{equation*}
\int_{u_{0}}^{\gamma u_{0}} \widehat{E}_{\chi, \mathfrak{a}}=-\lim _{\epsilon \rightarrow \infty} \int_{\gamma u_{3}}^{\gamma u_{4}} \widehat{E}_{\chi, \mathfrak{a}}-\lim _{\epsilon \rightarrow \infty} \int_{\gamma u_{4}}^{u_{3}} \widehat{E}_{\chi, \mathfrak{a}} \tag{3.139}
\end{equation*}
$$

We will compute these two integrals separately.

Figure 4: The path $P_{\epsilon}(\gamma)$ when $c \neq 0$. The blue axis is the v-axis of $u=z+j v$, whereas the green (resp. red) axis is the x-axis (resp y-axis). We start with the geodesic segment joining u_{0} to $u_{1}=\gamma u_{0}$. We then consider the geodesic segment from $u_{1}=z\left(v_{1}\right)+j v\left(u_{1}\right)$ to $u_{2}=z\left(v_{1}\right)+j \epsilon v\left(u_{1}\right)$ for some $\epsilon>0$, along the vertical geodesic line through u_{1}. We denote by $\mathcal{H}_{\infty, \epsilon v\left(u_{1}\right)}$ the blue horosphere parallel to the xy-axis and containing u_{2}. We consider the cusp $\gamma^{-1} \infty=-\frac{d}{c}$. The red horosphere tangent to $\gamma^{-1} \infty$ is $\gamma^{-1} \mathcal{H}_{\infty, \epsilon v\left(u_{1}\right)}$. The points u_{3} and u_{4} are the intersection points between the vertical geodesics and the two horospheres. Note that $\gamma\left[u_{5}, u_{0}\right]=-\left[u_{1}, u_{2}\right]$.

- We begin with the integrals inside the blue horosphere at the cusp ∞. By definition of the restriction $\widehat{E}_{\chi, \mathfrak{a}}^{(\infty)}$ of $\widehat{E}_{\chi, \mathfrak{a}}$ to the boundary at ∞, we have

$$
\begin{equation*}
\lim _{\epsilon \rightarrow \infty} \int_{\gamma u_{4}}^{u_{3}} \widehat{E}_{\chi, \mathfrak{a}}=\int_{z} \widehat{E}_{\chi, \mathfrak{a}}^{(\infty)} \tag{3.140}
\end{equation*}
$$

Figure 5: The path $\widetilde{P}_{\epsilon}(\gamma)$ is Γ-equivalent to the path $P_{\epsilon}(\gamma)$ in Figure 4. Note that $\gamma\left[u_{5}, u_{0}\right]=-\left[u_{1}, u_{2}\right]$. Hence we can translate $\left[u_{5}, u_{0}\right]$ by γ and get twice the same geodesic segment between u_{1} and u_{2} with opposite orientations. Then, we translate by γ the geodesic between ∞ and $\gamma^{-1} \infty$ containing u_{3} and u_{4} to the geodesic between $\gamma \infty$ and ∞. The segment $\left[u_{3}, u_{4}\right]$ is translated to $\left[\gamma u_{3}, \gamma u_{4}\right]$. The segment $\left[u_{4}, u_{5}\right]$ contained in the red horosphere tangent to $\gamma^{-1} \infty$ is sent to the segment $\left[\gamma u_{4}, u_{2}\right]$ contained in the blue horosphere containing u_{2} and u_{3}.
where z is the image in the horosphere $\mathcal{H}_{\infty} \simeq \mathbb{C}$ at ∞ of the segment $\left[\gamma u_{4}, u_{3}\right]$. Moreover, by Proposition 3.9 the restriction at the cusp $c=\infty$ is

$$
\begin{equation*}
\widehat{E}_{\chi, \mathfrak{a}}^{(\infty)}=\chi\left(\mathfrak{a}^{-1}\right) G_{2}(\mathfrak{a})(d z-d \bar{z}) . \tag{3.141}
\end{equation*}
$$

Let us parametrise the segment z more precisely. We have $\gamma \infty=\frac{a}{c}$ and $\gamma^{-1} \infty=-\frac{d}{c}$. Hence we have $\gamma u_{4}=\frac{a}{c}+\epsilon v\left(u_{1}\right)$ and $u_{3}=-\frac{d}{c}+\epsilon v\left(u_{1}\right)$. Hence, inside the horosphere, the cycle z is the
segment $z(t)=\frac{a}{c}-t \frac{a+d}{c}$ with $0 \leq t \leq 1$. Thus, the integral is

$$
\begin{align*}
\int_{z} \widehat{E}_{\chi, \mathfrak{a}}^{(\infty)} & =\chi(\mathfrak{a})^{-1} \int_{0}^{1}\left(G_{2}(\mathfrak{a}) z(t)-G_{2}(\mathfrak{a}) \bar{z}(t)\right) d t \\
& =-\chi(\mathfrak{a})^{-1}\left(G_{2}(\mathfrak{a}) \frac{a+d}{c}-G_{2}(\mathfrak{a}) \overline{\left(\frac{a+d}{c}\right)}\right) \\
& =-\chi(\mathfrak{a})^{-1} G_{2}(\mathfrak{a}) I\left(\frac{a+d}{c}\right) \tag{3.142}
\end{align*}
$$

- Let us now compute the integral along $\left[\gamma u_{3}, \gamma u_{4}\right]$. The path $\left[\gamma u_{3}, \gamma u_{4}\right]$ in Figure 5 is parametrized by $u(t)=\frac{a}{c}+j t$ with $d(\epsilon)<t<\epsilon v\left(u_{1}\right)$, where $d(\epsilon)=v\left(\gamma u_{3}\right)$ is the diameter of the green horosphere tangent at $\gamma \infty$. Using (3.89), one can see that $d(\epsilon)=\frac{1}{|c|^{2} \epsilon v\left(u_{1}\right)}$. In particular, we have $d(\epsilon) \rightarrow 0$ as ϵ. We can compute the integral

$$
\begin{align*}
\int_{\gamma u_{3}}^{\gamma u_{4}} \widehat{E}_{\chi, \mathfrak{a}}(u, s) & =\int_{\frac{1}{|c|^{2} \epsilon v\left(u_{1}\right)}}^{\epsilon v\left(u_{1}\right)} \widehat{E}_{\chi, \mathfrak{a}, v}(u, s) \\
& =2 \chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} \sum_{(m, n) \in \mathfrak{a} \times \mathfrak{a}} \int_{\frac{1}{|c|^{2} \epsilon v\left(u_{1}\right)}}^{\epsilon v\left(u_{1}\right)} \frac{\left(\left|m \frac{a}{c}+n\right|^{2}+|m|^{2} t^{2}\right)^{2+s}}{} d t \\
& =2 \chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} \sum_{(m, n) \in \mathfrak{a} \times \mathfrak{a}} \frac{\left(\overline{m \frac{a}{c}+n}\right) \bar{m}}{\left|m \frac{a}{c}+n\right|^{2(2+s)}} \int_{\frac{1}{|\bar{m}|^{2} \epsilon v\left(u_{1}\right)}}^{\epsilon v\left(u_{1}\right)} \frac{t^{1+s}}{\left(1+\frac{|m|^{2}}{\left|m \frac{a}{c}+n\right|^{2}} t^{2}\right)^{2+s}} d t \tag{3.143}
\end{align*}
$$

By substituting $\alpha=\frac{|m|}{\left|m \frac{a}{c}+n\right|} t$ and taking the limit as ϵ goes to ∞, this becomes

$$
\begin{align*}
& 2 \chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} \sum_{(m, n) \in \mathfrak{a} \times \mathfrak{a}} \frac{\left(\overline{m \frac{a}{c}+n}\right)}{\left|m \frac{a}{c}+n\right|^{2+s}} \frac{\bar{m}}{|m|^{2+s}} \int_{0}^{\infty} \frac{\alpha^{1+s}}{\left(1+\alpha^{2}\right)^{2+s}} d \alpha \\
& =\chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} B\left(1+\frac{s}{2}, 1+\frac{s}{2}\right) \sum_{(m, n) \in \mathfrak{a} \times \mathfrak{a}} \frac{\left(\overline{m \frac{a}{c}+n}\right)}{\left|m \frac{a}{c}+n\right|^{2+s}} \frac{\bar{m}}{|m|^{2+s}}, \tag{3.144}
\end{align*}
$$

where

$$
\begin{equation*}
B(x, y)=\int_{0}^{\infty} \frac{t^{y-1}}{(1+t)^{x+y}} d t=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \tag{3.145}
\end{equation*}
$$

is the Beta function. By writing $m=c \widetilde{m}+r$ and summing over \widetilde{m} and r we rewrite the inner sum in (3.144) as

$$
\begin{equation*}
\sum_{r \in \mathfrak{a} / c \mathfrak{a}} \sum_{(\widetilde{m}, n) \in \mathfrak{a} \times \mathfrak{a}} \frac{\left(\overline{r \frac{a}{c}+a \widetilde{m}+n}\right)}{\left|r \frac{a}{c}+a \widetilde{m}+n\right|^{2+s}} \frac{\overline{c \widetilde{m}+r}}{|c \widetilde{m}+r|^{2+s}} \tag{3.146}
\end{equation*}
$$

where the inner sum is restricted to $(\widetilde{m}, n) \neq(-r / c, 0)$. By summing over $(\widetilde{m}, a \widetilde{m}+n)$ instead of ($\widetilde{m}, n)$, we rewrite the sum as

$$
\begin{equation*}
\sum_{r \in \mathfrak{a} / \mathfrak{c a}} \frac{1}{c|c|^{s}} G\left(\frac{1+s}{2}, 1, \frac{a r}{c}, 0, \mathfrak{a}\right) G\left(\frac{1+s}{2}, 1, \frac{r}{c}, 0, \mathfrak{a}\right) \tag{3.147}
\end{equation*}
$$

where the inner sum in the first line is restricted to $(\widetilde{m}, \widetilde{n}) \neq(-r / c,-a r / c)$. Hence at $s=0$ we get

$$
\begin{equation*}
\int_{\gamma u_{3}}^{\gamma u_{4}} \widehat{E}_{\chi, \mathfrak{a}}=\chi(\mathfrak{a})^{-1} B(1,1) \frac{1}{c} \sum_{r \in \mathfrak{a} / \mathfrak{c a}} G_{1}\left(\frac{a r}{c}, \mathfrak{a}\right) G_{1}\left(\frac{r}{c}, \mathfrak{a}\right)=\chi(\mathfrak{a})^{-1} D(a, c, \mathfrak{a}) \tag{3.148}
\end{equation*}
$$

It follows from (3.139) and (3.142) that when $c \neq 0$:

$$
\begin{equation*}
\int_{u_{0}}^{\gamma u_{0}} \widehat{E}_{\chi, \mathfrak{a}}=\chi(\mathfrak{a})^{-1}\left(G_{2}(\mathfrak{a}) I\left(\frac{a+d}{c}\right)-D(a, c, \mathfrak{a})\right) . \tag{3.149}
\end{equation*}
$$

2. Suppose that $c=0$. Let $P_{\epsilon}(\gamma)$ the closed path pictured in Figure 6. The integrals along the

Figure 6: The path $P_{\epsilon}(\gamma)$ for $c=0$. The two sides of the square are γ translate of each other with opposite directions.
paths $\left[u_{1}, u_{2}\right]$ and $\left[u_{3}, u_{0}\right]$ in Figure 6 cancel since $\left[u_{1}, u_{2}\right]=-\gamma\left[u_{3}, u_{0}\right]$ and $\widehat{E}_{\chi, \mathfrak{a}}$ is Γ-invariant. As in (3.140) we have

$$
\begin{equation*}
\int_{u_{0}}^{\gamma u_{0}} \widehat{E}_{\chi, \mathfrak{a}}=-\lim _{\epsilon \rightarrow \infty} \int_{u_{2}}^{u_{3}} \widehat{E}_{\chi, \mathfrak{a}}=\int_{z} \widehat{E}_{\chi, \mathfrak{a}}^{(\infty)} \tag{3.150}
\end{equation*}
$$

where z is the segment in \mathcal{H}_{∞} obtained by moving $\left[u_{2}, u_{3}\right.$] to ∞. Since K has no non-trivial units, we have $a, d= \pm 1$ and $a / d=1$. If $u_{0}=z_{0}+j v_{0}$, then $\gamma u_{0}=z_{0}+\frac{b}{d}+j v_{0}$. Hence, the path z is parametrized by $z(t)=z_{0}+\frac{b}{d}(1-t)$ for $0 \leq t \leq 1$. At the boundary the form is

$$
\begin{equation*}
\widehat{E}_{\chi, \mathfrak{a}}^{(\infty)}=\chi(\mathfrak{a})^{-1} G_{2}(\mathfrak{a})(d z-d \bar{z}) \tag{3.151}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\int_{z} \widehat{E}_{\chi, \mathfrak{a}}^{(\infty)}=\chi(\mathfrak{a})^{-1} G_{2}(\mathfrak{a}) \int_{0}^{1}(z(t)-\bar{z}(t)) d t=-\chi(\mathfrak{a})^{-1} G_{2}(\mathfrak{a}) I\left(\frac{b}{d}\right) \tag{3.152}
\end{equation*}
$$

COROLLARY 3.12. The forms $2 \widehat{E}_{\chi, \mathfrak{a}}^{\text {alg }}:=2 \Omega^{-2} \widehat{E}_{\chi, \mathfrak{a}}$ are in $\widetilde{H}^{1}\left(X_{\Gamma}, \mathscr{O}_{F}\right)$.

Proof. We have

$$
\begin{equation*}
\int_{u_{0}}^{\gamma u_{0}} 2 \widehat{E}_{\chi, \mathfrak{a}}^{\mathrm{alg}}=2 \Omega^{-2} \int_{u_{0}}^{\gamma u_{0}} \widehat{E}_{\chi, \mathfrak{a}}=\Omega^{-2} \chi\left(\mathfrak{a}^{-1}\right) 2 \Phi_{\mathfrak{a}}(\gamma)=\chi\left(\mathfrak{a}^{-1}\right) \lambda\left(\mathfrak{a}^{-1}\right)^{2} 2 \Phi_{L_{\mathfrak{a}}-1}(\gamma) \tag{3.153}
\end{equation*}
$$

By Proposition (2.3) the factor $\chi(\mathfrak{a}) \lambda(\mathfrak{a})^{2}$ is a unit in \mathscr{O}_{F} for any fractional ideal \mathfrak{a}, and the result follows from the integrality of the Sczech cocycle.

4 Denominators of the Eisenstein cohomology

We have seen that $H_{\text {Eis }}^{1}\left(X_{\Gamma} ; \mathbb{C}\right)$ is an h-dimensional complex vector space spanned by the forms $E_{\chi, \mathfrak{a}}$. The \mathscr{O}_{F}-lattice $\mathcal{L}_{\text {Eis }}$ of $H_{\text {Eis }}^{1}\left(X_{\Gamma}, \mathbb{C}\right)$ defined by

$$
\begin{equation*}
\mathcal{L}_{\text {Eis }}:=\operatorname{Eis}\left(\widetilde{H}^{1}\left(\partial X_{\Gamma} ; \mathscr{O}_{F}\right)\right)=\bigoplus_{[\mathfrak{a}] \in \operatorname{Cl}(K)} E_{\chi, \mathfrak{a}} \mathscr{O}_{F} \tag{4.1}
\end{equation*}
$$

gives us an integral structure on $H_{\text {Eis }}^{1}\left(X_{\Gamma}, \mathbb{C}\right)$, i.e $\mathcal{L}_{\text {Eis }} \otimes_{\mathscr{O}_{F}} \mathbb{C} \simeq H_{\text {Eis }}^{1}\left(X_{\Gamma}, \mathbb{C}\right)$. Another \mathscr{O}_{F}-lattice is given by the integral Eisenstein classes

$$
\begin{equation*}
\mathcal{L}_{0}:=\widetilde{H}^{1}\left(X_{\Gamma} ; \mathscr{O}_{F}\right) \cap H_{\mathrm{Eis}}^{1}\left(X_{\Gamma} ; \mathbb{C}\right) \subset H_{\mathrm{Eis}}^{1}\left(X_{\Gamma} ; \mathbb{C}\right) \tag{4.2}
\end{equation*}
$$

We define the denominator of the Eisenstein cohomology to be the \mathscr{O}_{F}-ideal

$$
\begin{equation*}
\operatorname{Den}\left(\mathcal{L}_{\text {Eis }}\right):=\left\{\lambda \in \mathscr{O}_{F} \mid \lambda \mathcal{L}_{\text {Eis }} \subset \mathcal{L}_{0}\right\} \tag{4.3}
\end{equation*}
$$

LEMMA 4.1. The submodule $\mathcal{L}_{\text {Eis }}$ does not depend on the choice of the Hecke character χ.

Proof. Let us temporarily denote by $\mathcal{L}_{\chi \text {, Eis }}$ and $\mathcal{L}_{\widetilde{\chi} \text {, Eis }}$ the lattice that we obtain for two different Hecke characters $\widetilde{\chi}$ and χ of infinity type $(-2,0)$. Then $\varphi=\chi / \widetilde{\chi}$ is an F-valued character on the class group of K. Since $E_{\widetilde{\chi}, \mathfrak{a}}=\varphi(\mathfrak{a})^{-1} E_{\chi, \mathfrak{a}}$, we have $\mathcal{L}_{\chi, \text { Eis }}=M \mathcal{L}_{\widetilde{\chi}, \text { Eis }}$, where

$$
M=\operatorname{diag}\left(\varphi\left(\mathfrak{a}_{1}\right)^{-1}, \ldots, \varphi\left(\mathfrak{a}_{h}\right)^{-1}\right)
$$

Since $\varphi(\mathfrak{a})^{h}=1$, the value $\varphi(\mathfrak{a})$ is a unit in \mathscr{O}_{F} and $M \in \operatorname{Mat}_{h}\left(\mathscr{O}_{F}\right)$. Furthermore, the determinant of M is

$$
\operatorname{det}(M)=\prod_{\mathfrak{a} \in \operatorname{Cl}(K)} \varphi(\mathfrak{a})^{-1}
$$

The substitution $\mathfrak{a} \rightarrow \mathfrak{a}^{-1}$ shows that $\operatorname{det}(M)=\operatorname{det}(M)^{-1}$. Hence $\operatorname{det}(M)= \pm 1$ and M is in $\mathrm{GL}_{h}\left(\mathscr{O}_{F}\right)$.

4.1 The upper bound

We will need the following result on Dedekind determinants, of which a proof can be found in [Lan90, Chapter. 3, Theorem. 6.1].

LEMMA 4.2. Let f any complex valued function on a finite abelian group G. Then

$$
\operatorname{det}\left(f\left(a^{-1} b\right)\right)_{a, b \in G}=\prod_{\varphi \in \widehat{G}}\left(\sum_{a \in G} \varphi(a) f\left(a^{-1}\right)\right)
$$

Theorem 4.3. The form

$$
\frac{1}{2 \sqrt{D}} L^{\mathrm{int}}\left(\chi \circ \mathrm{~N}_{H / K}, 0\right) E_{\chi, \mathfrak{a}}
$$

is integral in \mathscr{O}_{F}. In particular, the denominator has the upper bound

$$
L^{\mathrm{int}}\left(\chi \circ \mathrm{~N}_{H / K}, 0\right) \mathscr{O}_{F} \subset \operatorname{Den}\left(\mathcal{L}_{\text {Eis }}\right)
$$

Proof. Let $M_{\chi} \in \mathrm{GL}_{h}(F)$ be the matrix such that

$$
\left(\begin{array}{c}
\widehat{E}_{\chi, \mathfrak{a}_{1}}^{\mathrm{alg}} \tag{4.4}\\
\vdots \\
\widehat{E}_{\chi, \mathfrak{a}_{h}}^{\mathrm{alg}}
\end{array}\right)=M_{\chi}\left(\begin{array}{c}
E_{\chi, \mathfrak{a}_{1}} \\
\vdots \\
E_{\chi, \mathfrak{a}_{h}}
\end{array}\right)
$$

By Proposition 3.6, we have

$$
M_{\chi}=\left[\Omega^{-2} \frac{\chi\left(\mathfrak{a b} \mathfrak{b}^{-1}\right)}{w\left(\mathfrak{a}^{-1} \mathfrak{b}\right)} G_{2}\left(\mathfrak{a}^{-1} \mathfrak{b}\right)\right]_{[\mathfrak{a}],[\mathfrak{b}] \in \mathrm{Cl}(K)}
$$

Applying the previous lemma to the function

$$
f(\mathfrak{a})=\Omega^{-2} \frac{\chi\left(\mathfrak{a}^{-1}\right)}{w(\mathfrak{a})} G_{2}(\mathfrak{a})
$$

we then have

$$
\begin{align*}
\operatorname{det}\left(M_{\chi}\right) & =\prod_{\varphi \in \widehat{\operatorname{Cl}(K)}}\left(\Omega^{-2} \sum_{\mathfrak{a} \in \mathrm{Cl}(K)} \varphi(\mathfrak{a}) \frac{\chi(\mathfrak{a})}{w\left(\mathfrak{a}^{-1}\right)} G_{2}\left(\mathfrak{a}^{-1}\right)\right) \\
& =\prod_{\varphi \in \widehat{\operatorname{Cl}(K)}} \Omega^{-2} L(\varphi \chi, 0) \\
& =\prod_{\varphi \in \widetilde{\operatorname{Cl}(K)}} L^{\operatorname{alg}}(\varphi \chi, 0) \\
& =L^{\operatorname{alg}}\left(\chi \circ \mathrm{N}_{H / K}, 0\right) . \tag{4.5}
\end{align*}
$$

We have already seen in the proof of Proposition 2.4 that for any fractional ideal \mathfrak{a}

$$
\begin{equation*}
4 \sqrt{D} f\left(\mathfrak{a}^{-1}\right)=4 \sqrt{D} \frac{\chi(\mathfrak{a})}{w\left(\mathfrak{a}^{-1}\right)} \lambda(\mathfrak{a})^{2} G_{2}\left(L_{\mathfrak{a}}\right) \in \mathscr{O}_{F} \tag{4.6}
\end{equation*}
$$

is integral. Hence the matrix $\widetilde{M}_{\chi}:=4 \sqrt{D} M_{\chi}$ is in $\mathrm{GL}_{h}(F) \cap \operatorname{Mat}_{h}\left(\mathscr{O}_{F}\right)$. Furthermore, the adjoint matrix $N_{\chi}:=\operatorname{det}\left(\widetilde{M}_{\chi}\right) \widetilde{M}_{\chi}^{-1}$ also has coefficients in \mathscr{O}_{F} and

$$
\begin{align*}
N_{\chi} M_{\chi} & =4^{-1} D^{-\frac{1}{2}} N_{\chi} \widetilde{M}_{\chi} \\
& =4^{-1} D^{-\frac{1}{2}} \operatorname{det}\left(\widetilde{M}_{\chi}\right) \\
& =4^{h-1} D^{\frac{h-1}{2}} \operatorname{det}\left(M_{\chi}\right) \\
& =4^{h-1} D^{\frac{h-1}{2}} L^{\mathrm{alg}}\left(\chi \circ \mathrm{~N}_{H / K}, 0\right) \\
& =4^{-1} D^{-\frac{1}{2}} L^{\mathrm{int}}\left(\chi \circ \mathrm{~N}_{H / K}, 0\right) \tag{4.7}
\end{align*}
$$

Applying $2 N_{\chi}$ to both sides of (4.4) we find that

$$
2 N_{\chi}\left(\begin{array}{c}
\widehat{E}_{\chi, \mathfrak{a}_{1}}^{\mathrm{alg}} \tag{4.8}\\
\vdots \\
\widehat{E}_{\chi, \mathfrak{a}_{h}}^{\mathrm{alg}}
\end{array}\right)=\frac{1}{2 \sqrt{D}} L^{\mathrm{int}}\left(\chi \circ \mathrm{~N}_{H / K}, 0\right)\left(\begin{array}{c}
E_{\chi, \mathfrak{a}_{1}} \\
\vdots \\
E_{\chi, \mathfrak{a}_{h}}
\end{array}\right)
$$

Since the left hand side is integral, it follows that

$$
\begin{equation*}
\frac{1}{2 \sqrt{D}} L^{\mathrm{int}}\left(\chi \circ \mathrm{~N}_{H / K}, 0\right) E_{\chi, \mathfrak{a}_{i}} \tag{4.9}
\end{equation*}
$$

is integral for any i.

4.2 Relation to the work of Berger

In his work [Ber08], Berger uses the adelic setting that we will need to convert to the classical setting. Let us suppose for the rest of this section that K has class number one. A more general result relating the adelic Eisenstein cohomology to Sczech's cocycle is due to Weselmann, see in particular [Wes88, Bemerkung. 2, p. 116].

We recall the setting of [Ber09, Section. 4.3]. Let $\phi=\left(\phi_{1}, \phi_{2}\right)$ be a pair of Hecke characters on the idèles \mathbb{A}_{K}^{\times}, where $\phi_{1, \infty}(z)=z$ and $\phi_{2, \infty}(z)=z^{-1}$. Hence, the character $\chi=\phi_{1} / \phi_{2}$ has infinity type $\chi_{\infty}(z)=z^{2}$. Suppose that χ is unramified. Let $G:=\mathrm{GL}_{2 / K}$, let $K_{\infty}:=\mathbb{C}^{*} \cdot \mathrm{U}(2)$. Let \mathfrak{M}_{i} be the conductor of ϕ_{i} and set

$$
\begin{equation*}
K_{f}=\prod_{v \mid \mathfrak{M}_{1}} U^{1}\left(\mathfrak{M}_{1, v}\right) \prod_{v \mid \mathfrak{M}_{1}} \mathrm{GL}_{2}\left(\mathscr{O}_{v}\right) \tag{4.10}
\end{equation*}
$$

where $U^{1}\left(\mathfrak{M}_{1, v}\right)=\left\{k \in \operatorname{GL}_{2}\left(\mathscr{O}_{v}\right) \mid \operatorname{det}(k) \equiv 1 \bmod \mathfrak{M}_{1, v}\right\}$ and $\mathfrak{M}_{1, v}$ is the ideal $\mathfrak{M}_{1} \mathscr{O}_{v}$. We define the adelic space

$$
\begin{equation*}
S_{K_{f}}:=G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{\infty} K_{f} . \tag{4.11}
\end{equation*}
$$

Since the class number of K is one, we have a decomposition

$$
\begin{equation*}
G\left(\mathbb{A}_{f}\right)=G(\mathbb{Q}) K_{f} . \tag{4.12}
\end{equation*}
$$

This yields the isomorphism

$$
\begin{align*}
S_{K_{f}} & \longrightarrow Y_{\Gamma} \\
G(\mathbb{Q})\left(g_{\infty}, g_{f}\right) K_{\infty} K_{f} & \longmapsto \Gamma g^{-1} g_{\infty} j, \tag{4.13}
\end{align*}
$$

where we write $g_{f}=g k_{f}$ according to the decomposition (4.12), and $\Gamma=G(\mathbb{Q}) \cap K_{f}$.
Remark 4.1. The fact that $\Gamma=G(\mathbb{Q}) \cap K_{f}$ is only true if 1 is the only unit of \mathscr{O}^{*} that is congruent to 1 modulo \mathfrak{M}. If -1 is congruent 1 modulo \mathfrak{M}, then $G(\mathbb{Q}) \cap K_{f}=\mathrm{GL}_{2}(\mathscr{O})$. However this does not make a difference for the rest of the discussion. The Eisenstein series on $\mathrm{GL}_{2}(\mathscr{O}) \backslash \mathbb{H}_{3}$ and $\mathrm{SL}_{2}(\mathscr{O}) \backslash \mathbb{H}_{3}$ are the same, up to a potential factor 2 . However this factor will be irrelevant since we will consider the denominator away from certain primes dividing $2 D$.

Let \mathfrak{g} be the Lie algebra of $G(\mathbb{R})$ and \mathfrak{k} be the Lie algebra of K_{∞}. We have an orthogonal decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ with respect to the Killing form. We consider the following elements in $\mathfrak{p}_{\mathbb{C}}$:

$$
X=\left(\begin{array}{ll}
0 & 1 \tag{4.14}\\
1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right), \quad S=\frac{1}{2}\left(X \otimes_{\mathbb{R}} 1-Y \otimes_{\mathbb{R}} i\right) .
$$

Lemma 4.4. After identifying \mathfrak{p} with the tangent space of \mathbb{H}_{3} at j, we have

$$
\left.X \simeq 2 \frac{\partial}{\partial x}\right|_{u=j},\left.\quad Y \simeq 2 \frac{\partial}{\partial y}\right|_{u=j},\left.\quad S \simeq 2 \frac{\partial}{\partial z}\right|_{u=j}=\left.\frac{\partial}{\partial x}\right|_{u=j}-\left.i \frac{\partial}{\partial y}\right|_{u=j} .
$$

Proof. Let us prove the statement for X. Let $f(u)$ be a function on \mathbb{H}_{3} with coordinates $u=$ $x+i y+j v$. The action of X on f at $u=j$ is given by

$$
\begin{equation*}
(X f)(j):=\left.\frac{d}{d t}\right|_{t=0} f\left(\Phi_{X}(t)\right) \tag{4.15}
\end{equation*}
$$

where

$$
\Phi_{X}(t):=\exp (t X) j=\left(\begin{array}{cc}
\cosh (t) & \sinh (t) \tag{4.16}\\
\sinh (t) & \cosh (t)
\end{array}\right) j
$$

In the coordinates $u=x+i y+j v$, the map is explicitely given by

$$
\begin{equation*}
\Phi_{X}(t)=\frac{1}{\cosh (t)^{2}+\sinh (t)^{2}}(\sinh (2 t), 0,1) \in \mathbb{H}_{3} \simeq \mathbb{R}^{2} \times \mathbb{R}_{>0} \tag{4.17}
\end{equation*}
$$

and its derivative is

$$
\begin{equation*}
\Phi_{X}^{\prime}(0)=(2,0,0) \tag{4.18}
\end{equation*}
$$

Hence

$$
\begin{equation*}
(X f)(j)=\Phi_{X}^{\prime}(0) d_{u=j} f=2 \frac{\partial f}{\partial x}(j) \tag{4.19}
\end{equation*}
$$

The computation for Y is similar.

Consider the Borel subgroup

$$
B(\mathbb{Q}):=\left\{\left(\begin{array}{ll}
a & b \tag{4.20}\\
0 & d
\end{array}\right) \in \mathrm{GL}_{2}(K)\right\}
$$

We have $G(\mathbb{Q})=B(\mathbb{Q}) \Gamma$, hence (4.12) becomes

$$
\begin{equation*}
G\left(\mathbb{A}_{f}\right)=B(\mathbb{Q}) K_{f} \tag{4.21}
\end{equation*}
$$

since $\Gamma \subset K_{f}$. We have an isomorphism similar to (4.13):

$$
\begin{align*}
& B(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{\infty} K_{f} \longrightarrow \Gamma_{\infty} \backslash \mathbb{H}_{3} \\
& B(\mathbb{Q})\left(g_{\infty}, g_{f}\right) K_{\infty} K_{f} \longmapsto \Gamma_{\infty} b_{\infty}^{-1} g_{\infty} j \tag{4.22}
\end{align*}
$$

where $g_{\infty}=b_{\infty} k_{f}$ according to the decomposition (4.21). We have an isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{K_{\infty}}\left(\mathfrak{p}, C^{\infty}\left(G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{f}\right)\right) \longrightarrow \Omega^{1}\left(\mathbb{H}_{3}\right)^{\Gamma} \tag{4.23}
\end{equation*}
$$

where K_{∞} acts by the adjoint representation on \mathfrak{p}. Hence, an element $\widetilde{\omega}[X]\left(g_{\infty}, g_{f}\right)$ in the space on the left-hand side satisfies $\widetilde{\omega}[X]\left(g_{\infty} k_{\infty}, g_{f}\right)=\widetilde{\omega}\left[\operatorname{Ad}\left(k_{\infty}\right)^{-1} X\right]\left(g_{\infty}, g_{f}\right)$. The map goes as follows. Let $u=g_{\infty} j$ be a point in \mathbb{H}_{3} and $X_{u} \in T_{u} \mathbb{H}_{3}$ a tangent vector at u. We define a differential form in $\Omega^{1}\left(\mathbb{H}_{3}\right)^{\Gamma}$ by

$$
\begin{equation*}
\omega_{u}\left(X_{u}\right):=\widetilde{\omega}\left[d_{u} L_{g_{\infty}^{-1}} X_{u}\right]\left(g_{\infty}, 1\right) \tag{4.24}
\end{equation*}
$$

where $L_{g}(u)=g u$ is the map induced by the action of $G(\mathbb{R})$ on \mathbb{H}_{3}. Similarly, we have

$$
\begin{equation*}
\operatorname{Hom}_{K_{\infty}}\left(\mathfrak{p}, C^{\infty}\left(B(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{f}\right)\right) \longrightarrow \Omega^{1}\left(\mathbb{H}_{3}\right)^{\Gamma_{\infty}} \tag{4.25}
\end{equation*}
$$

The Eisenstein operator considered by Berger is

$$
\text { Eis: } \begin{align*}
\operatorname{Hom}_{K_{\infty}}\left(\mathfrak{p}, C^{\infty}\left(B(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{f}\right)\right) & \longrightarrow \operatorname{Hom}_{K_{\infty}}\left(\mathfrak{p}, C^{\infty}\left(G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{f}\right)\right) \\
\widetilde{\omega} & \longrightarrow \operatorname{Eis}(\widetilde{\omega})[X](g):=\sum_{\gamma \in B(\mathbb{Q}) \backslash G(\mathbb{Q})} \widetilde{\omega}[X](\gamma g) . \tag{4.26}
\end{align*}
$$

It is immediate from the definitions that the following diagram is commutative

Here the vertical arrows are the ismorphisms (4.23) and (4.25), and the horizontal map on the bottom is the operator Eis we considered in (3.69).

Let $\phi=\left(\phi_{1}, \phi_{2}\right)$ be as above. We view ϕ as a character on $B(\mathbb{A})$ by

$$
\phi\left(\begin{array}{ll}
a & b \tag{4.28}\\
0 & d
\end{array}\right)=\phi_{1}(a) \phi_{2}(d)
$$

and for a complex parameter s

$$
\phi_{s}\left(\begin{array}{ll}
a & b \tag{4.29}\\
0 & d
\end{array}\right)=\phi_{1}(a) \phi_{2}(d)\left|\frac{a}{d}\right|^{s / 2}
$$

The induced representation V_{ϕ} consists of complex valued functions Ψ on $G\left(\mathbb{A}_{f}\right)$ that satisfy $\Psi(b g)=\phi(b) \Psi(g)$ for every $b \in B\left(\mathbb{A}_{f}\right)$, and $\Psi(g k)=\Psi(g)$ for every $k \in K_{f}$. Given a function $\Psi \in V_{\phi_{s}}$, we define

$$
\begin{equation*}
\widetilde{\omega}_{\Psi, s} \in \operatorname{Hom}_{K_{\infty}}\left(\mathfrak{p}, C^{\infty}\left(B(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{f}\right)\right) \tag{4.30}
\end{equation*}
$$

by

$$
\begin{equation*}
\widetilde{\omega}_{\Psi, s}[X](g)=\left|\frac{a}{d}\right|^{1+s} \Psi\left(g_{f}\right) \check{S}\left(\operatorname{Ad}\left(k_{\infty}^{-1}\right) X\right) \tag{4.31}
\end{equation*}
$$

where

$$
g_{\infty}=\left(\begin{array}{ll}
a & b \tag{4.32}\\
0 & d
\end{array}\right) k_{\infty} \in B(\mathbb{R}) K_{\infty}
$$

and $\check{S} \in \operatorname{Hom}(\mathfrak{p}, \mathbb{C})$ is the dual of S. Berger then considers the Eisenstein class

$$
\begin{equation*}
\operatorname{Eis}(\Psi, s):=\operatorname{Eis}\left(\widetilde{\omega}_{\Psi, s}\right) \tag{4.33}
\end{equation*}
$$

where the operator Eis on the right-hand side is the operator in (4.26).
Since the class number of K is one, we have a unique equivalence class of cusps and the Eisenstein series that we defined in Section 3 is

$$
\begin{equation*}
E_{\chi}(u, s)=E_{\chi, \mathscr{O}}(u, s)=\operatorname{Eis}\left(v^{s} d z\right)=\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \gamma^{*}\left(v^{s} d z\right) \tag{4.34}
\end{equation*}
$$

Proposition 4.5. Let χ be an unramified character on \mathbb{A}_{K} such that $\chi_{\infty}(z)=z^{2}$. Let ϕ_{1} and ϕ_{2} be two characters as above and such that $\chi=\phi_{1} / \phi_{2}$. For any Ψ in V_{ϕ} we have $\operatorname{Eis}(\Psi, s)=$ $\frac{1}{2} \operatorname{Eis}_{\chi}(u, s)$

Proof. Let ω be the form in $\Omega^{1}\left(\mathbb{H}_{3}\right)^{\Gamma}$ corresponding to $\widetilde{\omega}_{\Psi, s}$ by the isomorphism (4.25). For $u=$ $z+j v$ a point on \mathbb{H}_{3}, the matrix

$$
b_{\infty}:=\left(\begin{array}{ll}
v & z \tag{4.35}\\
0 & 1
\end{array}\right) \in B(\mathbb{R})
$$

sends j to u. By (4.24), we then have

$$
\begin{align*}
\omega_{u}\left(X_{u}\right) & =\widetilde{\omega}_{\Psi, s}\left[d_{u} L_{b_{\infty}^{-1}} X_{u}\right]\left(b_{\infty}, 1\right) \\
& =v^{1+s} \check{S}\left(d_{u} L_{b_{\infty}^{-1}} X_{u}\right) . \tag{4.36}
\end{align*}
$$

It is immediate to check that $d L_{b_{\infty}^{-1}} X_{u}=\operatorname{diag}\left(v^{-1}, v^{-1}, v^{-1}\right)$. Hence

$$
\begin{equation*}
d L_{b_{\infty}^{-1}}\left(\left.\frac{\partial}{\partial z}\right|_{u}\right)=\left.v^{-1} \frac{\partial}{\partial z}\right|_{j}, \tag{4.37}
\end{equation*}
$$

and we find that $\omega=\frac{1}{2} v^{s} d z$. The result follows from the commutativity of the diagram (4.27).
Since K has class number one we have $F=H=K$ and the algebraic L-function is $L^{\text {alg }}(\chi \circ$ $\left.\mathrm{N}_{H / K}, 0\right)=L^{\text {alg }}(\chi, 0)=\frac{1}{2} G_{2}\left(L_{\mathscr{O}}\right)$ and $L^{\text {int }}\left(\chi \circ \mathrm{N}_{H / K}, 0\right)=2 \sqrt{D} G_{2}\left(L_{\mathscr{O}}\right)$. Now let \mathfrak{q} be a prime ideal of \mathscr{O} and let $\operatorname{Den}\left(\mathcal{L}_{\text {Eis,q}}\right)$ be as in (1.10).

Corollary 4.6. Let \mathfrak{q} be a prime ideal coprime to $2 D$, and suppose that K has class number one. Then the denominator at \mathfrak{q} of the Eisenstein cohomology is exactly

$$
\operatorname{Den}\left(\mathcal{L}_{\mathrm{Eis}, \mathfrak{q}}\right)=G_{2}\left(L_{\mathscr{O}}\right) \mathscr{O}_{\mathfrak{q}} .
$$

Proof. Since \mathfrak{q} is coprime to 2 and D we have

$$
\begin{equation*}
L^{\mathrm{alg}}\left(\chi \circ \mathrm{~N}_{H / K}, 0\right) \mathscr{O}_{\mathfrak{q}}=L^{\mathrm{int}}\left(\chi \circ \mathrm{~N}_{H / K}, 0\right) \mathscr{O}_{\mathfrak{q}}=G_{2}\left(L_{\mathscr{O}}\right) \mathscr{O}_{\mathfrak{q}} . \tag{4.38}
\end{equation*}
$$

From Theorem 4.3 we know that

$$
\begin{equation*}
G_{2}\left(L_{\mathscr{O}}\right) \mathscr{O}_{\mathfrak{q}} \subset \operatorname{Den}\left(\mathcal{L}_{\text {Eis }}\right) \mathscr{O}_{\mathfrak{q}} . \tag{4.39}
\end{equation*}
$$

On the other hand, by [Ber08, Theorem. 29] there is a $\Psi^{0} \in V_{\phi}$ such that

$$
\begin{equation*}
\operatorname{Den}\left(\operatorname{Eis}\left(\Psi^{0}\right)\right) \subset L^{\mathrm{alg}}(\chi, 0) \mathscr{O}_{\mathfrak{q}}=G_{2}\left(L_{\mathscr{O}}\right) \mathscr{O}_{\mathfrak{q}} . \tag{4.40}
\end{equation*}
$$

The conditions of Berger's theorem are satisfied since χ is unramified and of type ${ }^{4} \chi_{\infty}(z)=z^{2}$ by the final remark in [Ber08, p. 467]. By Proposition 4.5, we have $\mathcal{L}_{\text {Eis, } \mathfrak{q}}=\operatorname{Eis}\left(\Psi^{0}\right) \mathscr{O}_{\mathfrak{q}}$ hence

$$
\operatorname{Den}\left(\mathcal{L}_{\text {Eis }, \mathfrak{q}}\right)=\operatorname{Den}\left(\operatorname{Eis}\left(\Psi^{0}\right)\right) .
$$

[^3]Remark 4.2. When the class number is greater than one, then the space $S_{K_{f}}$ is no longer connected and is a disjoint union

$$
\begin{equation*}
S_{K_{f}}=\bigsqcup_{[\mathfrak{b}] \in H_{K}} \Gamma(\mathfrak{b}) \backslash \mathbb{H}_{3} \tag{4.41}
\end{equation*}
$$

where H_{K} can be represented by ideal classes. Hence our result (Theorem 4.3) only gives a bound on the denominator of the connected component corresponding to $\mathfrak{b}=\mathscr{O}$:

$$
\begin{equation*}
L^{\text {int }}\left(\chi \circ \mathrm{N}_{H / K}, 0\right) \mathscr{O}_{\mathfrak{q}} \subset \operatorname{Den}\left(\mathcal{L}_{\mathrm{Eis}}(\mathscr{O})\right) \mathscr{O}_{\mathfrak{q}} \tag{4.42}
\end{equation*}
$$

where $\mathcal{L}_{\text {Eis }}(\mathfrak{b})\left(\right.$ respectively $\left.\mathcal{L}_{\text {Eis }}\left(S_{K_{f}}\right)\right)$ is the integral structure on $\Gamma(\mathfrak{b}) \backslash \mathbb{H}_{3}$ (respectively on $S_{K_{f}}$). In particular, since $\mathcal{L}_{\text {Eis }}\left(S_{K_{f}}\right)=\bigoplus_{[\mathfrak{b}]} \mathcal{L}_{\text {Eis }}(\mathfrak{b})$, we have that

$$
\begin{equation*}
\operatorname{Den}\left(\mathcal{L}_{\text {Eis }}\left(S_{K_{f}}\right)\right) \mathscr{O}_{\mathfrak{q}}=\bigcap \operatorname{Den}\left(\mathcal{L}_{\text {Eis }}(\mathfrak{b})\right) \mathscr{O}_{\mathfrak{q}} . \tag{4.43}
\end{equation*}
$$

To find the denominator for the connected component associated to the fractional ideal \mathfrak{b}, we need to consider the Eisenstein series

$$
\begin{equation*}
\widehat{E}_{\chi, \mathfrak{a}, \mathfrak{b}}(u, s)=\chi(\mathfrak{a})^{-1} \mathrm{~N}(\mathfrak{a})^{s} \sum_{(c, d) \in \mathfrak{a} \times \mathfrak{a b}} \eta(u, c, d, s) \in \Omega^{1}\left(\mathbb{H}_{3}\right)^{\Gamma(\mathfrak{b})} \tag{4.44}
\end{equation*}
$$

associated to the cusp \mathfrak{a}. Similary we define $E_{\chi, \mathfrak{a}, \mathfrak{b}}(u, s)$, which is related to $\widehat{E}_{\chi, \mathfrak{a}, \mathfrak{b}}(u, s)$ by the matrix M_{χ} exactly as in (4.4). We can then define a cocycle $\Phi_{\mathfrak{a}, \mathfrak{b}}: \Gamma(\mathfrak{b}) \longrightarrow \mathbb{C}$ by

$$
\begin{equation*}
\Phi_{\mathfrak{a}, \mathfrak{b}}(\gamma):=\chi(\mathfrak{a}) \int_{u_{0}}^{\gamma u_{0}} \widehat{E}_{\chi, \mathfrak{a}, \mathfrak{b}} \tag{4.45}
\end{equation*}
$$

that specializes to Sczech's cocycle when $\mathfrak{b}=\mathscr{O}$. We do not know how prove that $\Phi_{\mathfrak{a}, \mathfrak{b}}$ is integral. If we were able to show the integrality at \mathfrak{q}, we would get the lower bound

$$
\begin{equation*}
L^{\mathrm{int}}\left(\chi \circ \mathrm{~N}_{H / K}, 0\right) \mathscr{O}_{\mathfrak{q}} \subset \operatorname{Den}\left(\mathcal{L}_{\text {Eis }}(\mathfrak{b})\right) \mathscr{O}_{\mathfrak{q}} \tag{4.46}
\end{equation*}
$$

on each of the connected components of $S_{K_{f}}$ by the same argument as in the proof of Theorem 4.3. By (4.43) we would get

$$
\begin{equation*}
L^{\text {int }}\left(\chi \circ \mathrm{N}_{H / K}, 0\right) \mathscr{O}_{\mathfrak{q}} \subset \operatorname{Den}\left(\mathcal{L}_{\text {Eis }}\left(S_{K_{f}}\right)\right) \mathscr{O}_{\mathfrak{q}} \tag{4.47}
\end{equation*}
$$

After applying Berger's result one should then get the equality

$$
\begin{equation*}
L^{\mathrm{int}}\left(\chi \circ \mathrm{~N}_{H / K}, 0\right) \mathscr{O}_{\mathfrak{q}}=\operatorname{Den}\left(\mathcal{L}_{\operatorname{Eis}}\left(S_{K_{f}}\right)\right) \mathscr{O}_{\mathfrak{q}} \tag{4.48}
\end{equation*}
$$

for imaginary quadratic fields of arbitrary class numbers.

References

[Ber08] Tobias Berger. "Denominators of Eisenstein cohomology classes for GL2 over imaginary quadratic fields". In: manuscripta mathematica 125.4 (2008), pp. 427470. DOI: 10.1007/s00229-007-0139-6. URL: https://doi.org/10.1007/ s00229-007-0139-6.
[Ber09] Tobias Berger. "On the Eisenstein ideal for imaginary quadratic fields". In: Compositio Mathematica 145.3 (2009), 603-632. DOI: 10.1112/S0010437X09003984.
[BCG20] Nicolas Bergeron, Pierre Charollois, and Luis E. Garcia. "Transgressions of the Euler class and Eisenstein cohomology of GLN(Z)". In: Japanese Journal of Mathematics 15.2 (2020), pp. 311-379. DOI: $10.1007 / \mathrm{s} 11537-019-1822-6$. URL: https://doi.org/10.1007/s11537-019-1822-6.
[BCG23] Nicolas Bergeron, Pierre Charollois, and Luis E. García. "Eisenstein cohomology classes for GL_{N} over imaginary quadratic fields". In: Journal für die reine und angewandte Mathematik (Crelles Journal) 2023.797 (2023), pp. 1-40.
[BJ06] Armand Borel and Lizhen Ji. Compactifications of Symmetric and Locally Symmetric Spaces. Mathematics: Theory and Applications 1. Birkhäuser Boston, MA, 2006.
[Cox89] David A. Cox. Primes of the form $x^{2}+n y^{2}$. A Wiley-Interscience Publication. Fermat, class field theory and complex multiplication. John Wiley \& Sons, Inc., New York, 1989, pp. xiv+351. ISBN: 0-471-50654-0; 0-471-19079-9.
[Dam71] R. Damerell. "L-functions of elliptic curves with complex multiplication, II". eng. In: Acta Arithmetica 19.3 (1971), pp. 311-317. URL: http://eudml.org/doc/ 205036.
[Fel05] Dirk Feldhusen. "Nenner der Eisensteinkohomologie der GL ${ }_{2}$ über imaginär quadratischen Zahlkörpern". PhD thesis. Rheinischen Friedrich-Wilhelms-Universität Bonn, 2005.
[Gee88] Gerard van der Geer. Hilbert modular surfaces. Vol. 16. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1988, pp. x+291. ISBN: 3-540-17601-2. DOI: 10.1007/978-3-642-61553-5. URL: https://doi .org/10.1007/978-3-642-61553-5.
[Gre85] Ralph Greenberg. "On the critical values of Hecke L-functions for imaginary quadratic fields". In: Invent. Math. 79.1 (1985), pp. 79-94. ISSN: 0020-9910. DOI: 10.1007/BF01388657. URL: https://doi.org/10.1007/BF01388657.
[Har87] G. Harder. "Eisenstein cohomology of arithmetic groups. The case GL2". In: Invent. Math. 89.1 (1987), pp. 37-118. ISSN: 0020-9910. DOI: 10.1007/BF01404673. URL: https://doi.org/10.1007/BF01404673.
[Har18] Günter Harder. "Eisenstein Cohomology for $\mathrm{SL}_{2}(\mathbb{Z}[i])$ and Special Values of L Functions". In: Cohomology of Arithmetic Groups. Ed. by James W. Cogdell et al. Cham: Springer International Publishing, 2018, pp. 51-82.
[Hat01] Allen Hatcher. Algebraic topology. Mathematics: Theory and Applications. Cambridge University Press, 2001. URL: https://pi.math.cornell.edu/~hatcher/ AT/AT.pdf.
[Ito87] Hiroshi Ito. "A function on the upper half space which is analogous to the imaginary part of $\log \eta(z)$." In: Journal für die reine und angewandte Mathematik 373 (1987), pp. 148-165. URL: http://eudml.org/doc/152888.
[JM02] Lizhen Ji and Robert Macpherson. "Geometry of compactifications of locally symmetric spaces". en. In: Annales de l'Institut Fourier 52.2 (2002), pp. 457559. DOI: 10.5802/aif. 1893. URL: http://www.numdam.org/articles/10. 5802/aif.1893/.
[KS20] Guido Kings and Johannes Sprang. Eisenstein-Kronecker classes, integrality of critical values of Hecke L-functions and p-adic interpolation. 2020. arXiv: 1912. 03657 [math.NT].
[Kön91] Harald König. Eisenstein-Kohomologie von $\mathrm{Sl}_{2}(\mathbf{Z}[i])$. Vol. 222. Bonner Mathematische Schriften [Bonn Mathematical Publications]. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1991. Universität Bonn, Mathematisches Institut, Bonn, 1991, p. 159.
[Lan78] Serge Lang. Elliptic curves: Diophantine analysis. Vol. 231. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin-New York, 1978, pp. xi+261. ISBN: 3-540-08489-4.
[Lan90] Serge Lang. Cyclotomic fields I and II. second. Vol. 121. Graduate Texts in Mathematics. With an appendix by Karl Rubin. Springer-Verlag, New York, 1990, pp. xviii+433. ISBN: 0-387-96671-4. DOI: 10.1007/978-1-4612-0987-4. URL: https://doi.org/10.1007/978-1-4612-0987-4.
[Mae93] Hartmut Maennel. Nenner von Eisensteinklassen auf Hilbertschen Modulvarietäten und die p-adische Klassenzahlformel. Vol. 247. Bonner Mathematische Schriften [Bonn Mathematical Publications]. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1992. Universität Bonn, Mathematisches Institut, Bonn, 1993, pp. $145+$ v.
[Rob78] Gilles Robert. "Nombres de Hurwitz et unités elliptiques. Un critère de régularité pour les extensions abéliennes d'un corps quadratique imaginaire". fr. In: Annales scientifiques de l'École Normale Supérieure 4e série, 11.3 (1978), pp. 297-389. DOI: 10.24033/asens.1349. URL: http://www.numdam.org/articles/10. 24033/asens.1349/.
[Sch94] Joachim Schwermer. "Eisenstein series and cohomology of arithmetic groups: the generic case". In: Invent. Math. 116.1-3 (1994), pp. 481-511. ISSN: 0020-9910. DOI: $10.1007 / \mathrm{BF} 01231570$. URL: https://doi.org/10.1007/BF01231570.
[Scz84] Robert Sczech. "Dedekindsummen mit elliptischen Funktionen". In: Inventiones mathematicae 76.3 (1984), pp. 523-551. DOI: 10.1007/BF01388472. URL: https : //doi.org/10.1007/BF01388472.
[Scz86] Robert Sczech. "Dedekind sums and power residue symbols". en. In: Compositio Mathematica 59.1 (1986), pp. 89-112. URL: http://www.numdam.org/item/CM_ 1986__59_1_89_0/.
[Sha87] Ehud de Shalit. Iwasawa Theory of Elliptic curves with Complex Multiplication. Ed. by Academic Press. 1st edition. Perspectives in mathematics. Harcourt Brace Jovanovich, 1987. ISBN: 0-12-210255-X.
[Ste89] Glenn Stevens. "The Eisenstein measure and real quadratic fields". In: Théorie des nombres / Number Theory: Proceedings of the International Number Theory Conference held at Université Laval, July 5-18, 1987. Ed. by Jean M. de Koninck and Claude Levesque. De Gruyter, 1989, pp. 887-927. DOI: doi:10.1515/ 9783110852790.887. URL: https://doi.org/10.1515/9783110852790. 887.
[Wei76] André Weil. Elliptic Functions according to Eisenstein and Kronecker. 1st edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin, Heidelberg, 1976. ISBN: 978-3-540-07422-9.
[Wes88] Uwe Weselmann. "Eisensteinkohomologie und Dedekindsummen für GL ${ }_{2}$ über imaginär-quadratischen Zahlkörpern". In: J. Reine Angew. Math. 389 (1988), pp. 90-121. ISSN: 0075-4102. DOI: $10.1515 /$ crll.1988.389.90. URL: https: //doi.org/10.1515/crll.1988.389.90.

[^0]: ${ }^{1}$ This is required to define the canonical period used in the normalization of the L-function.

[^1]: ${ }^{2}$ See for example [Cox89, p.261].

[^2]: ${ }^{3}$ Note that in [Lan78] the result is proved for a split prime ideal \mathfrak{p}. However, any class in $\mathrm{Cl}(K)$ contains such an ideal and equality (2.26) only depends on the ideal class of \mathfrak{a}.

[^3]: ${ }^{4}$ It correspond to the type $(-2,0)$ in our notation when viewed as a character on the group of fractional ideals.

